分析 由題意可知A在底面PBC的投影為底面正三角形的中心,設(shè)球半徑為r,用r表示出由球心,△PBC的中心和P點構(gòu)成的直角三角形的三邊,使用勾股定理解出r,得出球的面積.
解答 解:∵BC=PB=PC=$\sqrt{2}$,AP=AB=AC=1,
∴三棱錐A-PBC為正三棱錐,
作AO⊥平面PBC,則O為正三角形PBC的中心,且PO=$\frac{\sqrt{6}}{3}$.
∴OA=$\sqrt{P{A}^{2}-O{P}^{2}}$=$\frac{\sqrt{3}}{3}$.
設(shè)外接球球心為M,半徑為r,則PM=r,MO=|$\frac{\sqrt{3}}{3}$-r|,
由勾股定理得:r2=($\frac{\sqrt{6}}{3}$)2+($\frac{\sqrt{3}}{3}$-r)2,
解得r=$\frac{\sqrt{3}}{2}$.
∴球的表面積S=4πr2=3π.
故答案為:3π.
點評 本題考查了棱錐與外接球的關(guān)系,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3.6 | B. | 4 | C. | 12.4 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}+{y^2}$=1 | B. | $\frac{y^2}{4}+{x^2}$=1 | ||
C. | $\frac{x^2}{4}+{y^2}$=1或$\frac{y^2}{4}+{x^2}$=1 | D. | $\frac{y^2}{4}+\frac{x^2}{2}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{7}{3}$ | C. | -$\frac{1}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)y=f(x)是周期函數(shù),且周期T=3 | B. | 函數(shù)y=f(x)在R上有可能是單調(diào)函數(shù) | ||
C. | 函數(shù)y=f(x)的圖象關(guān)于點$(-\frac{3}{4},0)$對稱 | D. | 函數(shù)y=f(x)是R上的偶函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com