3.對任意的實數(shù)m,n,當(dāng)0<n<m<$\frac{1}{a}$,恒有$\frac{\root{m}{n}}{\root{n}{m}}$>$\frac{{n}^{a}}{{m}^{a}}$成立,則實數(shù)a的最小值為1.

分析 由條件化簡可得原不等式即為n${\;}^{\frac{1}{m}-a}$>m${\;}^{\frac{1}{n}-a}$,可得lnn${\;}^{\frac{1}{m}-a}$>lnm${\;}^{\frac{1}{n}-a}$,可得$\frac{lnm}{\frac{1}{m}-a}$<$\frac{lnn}{\frac{1}{n}-a}$,設(shè)f(x)=$\frac{lnx}{\frac{1}{x}-a}$,求出導(dǎo)數(shù),由題意可得f(x)在(0,$\frac{1}{a}$)遞減,再由f′(x)≤0恒成立,即可求得a的最小值.

解答 解:由0<n<m<$\frac{1}{a}$,
$\frac{\root{m}{n}}{\root{n}{m}}$>$\frac{{n}^{a}}{{m}^{a}}$即為$\frac{{n}^{\frac{1}{m}}}{{n}^{a}}$>$\frac{{m}^{\frac{1}{n}}}{{m}^{a}}$,
即有n${\;}^{\frac{1}{m}-a}$>m${\;}^{\frac{1}{n}-a}$,
可得lnn${\;}^{\frac{1}{m}-a}$>lnm${\;}^{\frac{1}{n}-a}$,
即有($\frac{1}{m}$-a)lnn>($\frac{1}{n}$-a)lnm恒成立,
由$\frac{1}{n}$-a>$\frac{1}{m}$-a>0,可得
$\frac{lnm}{\frac{1}{m}-a}$<$\frac{lnn}{\frac{1}{n}-a}$,
設(shè)f(x)=$\frac{lnx}{\frac{1}{x}-a}$,則f′(x)=$\frac{\frac{1}{x}(\frac{1}{x}-a)+lnx•\frac{1}{{x}^{2}}}{(\frac{1}{x}-a)^{2}}$,
由0<n<m<$\frac{1}{a}$,可得f(x)在(0,$\frac{1}{a}$)遞減,
可得f′(x)≤0恒成立,即為
$\frac{1}{x}$($\frac{1}{x}$-a)+lnx•$\frac{1}{{x}^{2}}$≤0,
即有a≥$\frac{1+lnx}{x}$恒成立,
由g(x)=$\frac{1+lnx}{x}$的導(dǎo)數(shù)為g′(x)=$\frac{1-(1+lnx)}{{x}^{2}}$=-$\frac{lnx}{{x}^{2}}$,
當(dāng)$\frac{1}{a}$≤1即a≥1時,g(x)遞增,a≥$\frac{1+ln\frac{1}{a}}{\frac{1}{a}}$,
即1≥1-lna,顯然成立;
當(dāng)$\frac{1}{a}$≥1即0<a≤1時,可得x=1處取得最大值1,即a≥1,
顯然a=1不恒成立.
綜上可得a的最小值為1.
故答案為:1.

點評 本題考查不等式恒成立問題的解法,注意運用轉(zhuǎn)化思想和構(gòu)造函數(shù)法,運用導(dǎo)數(shù)判斷單調(diào)性,考查化簡整理的運算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求證:$\frac{1}{2}$<$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n>1,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,已知sinA=2cosB•sinC,則△ABC的形狀是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}中,a1=1,Sn表示前n項和,且Sn,Sn+1,2S1成等差數(shù)列.
(1)計算S1,S2,S3的值;
(2)根據(jù)以上結(jié)果猜測Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a、b、c為正實數(shù),求證:abc≥$\frac{a+b+c}{\frac{1}{{a}^{2}}+\frac{1}{^{2}}+\frac{1}{{c}^{2}}}$≥(a+b-c)(b+c-a)(c+a-b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某職業(yè)學(xué)校有2000名學(xué)生,校服務(wù)部為了解學(xué)生在校的月消費情況,隨機調(diào)查了100名學(xué)生,并將統(tǒng)計結(jié)果繪成直方圖如圖:
(Ⅰ)試估計該校學(xué)生在校月消費的平均數(shù);
(Ⅱ)根據(jù)校服務(wù)部以往的經(jīng)驗,每個學(xué)生在校的月消費金額x(元)和服務(wù)部可獲得利潤y(元),滿足關(guān)系式:$y=\left\{\begin{array}{l}20,\;\;\;200≤x<400\\ 40,\;\;400≤x<800\\ 80,\;\;800≤x≤1200.\end{array}\right.$根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:
(ⅰ)對于任意一個學(xué)生,校服務(wù)部可獲得的利潤記為ξ,求ξ的分布列及數(shù)學(xué)期望.
(ⅱ)若校服務(wù)部計劃每月預(yù)留月利潤的$\frac{2}{9}$,用于資助在校月消費低于400元的學(xué)生,那么受資助的學(xué)生每人每月可獲得多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合S=$\left\{{k\left|{1≤k≤\frac{{{3^n}-1}}{2},k∈{N^*}}\right.}\right\}$(n≥2,且n∈N*).若存在非空集合S1,S2,…,Sn,使得S=S1∪S2∪…∪Sn,且Si∩Sj=∅(1≤i,j≤n,i≠j),并?x,y∈Si(i=1,2,…,n),x>y,都有x-y∉Si,則稱集合S具有性質(zhì)P,Si(i=1,2,…,n)稱為集合S的P子集.
(Ⅰ)當(dāng)n=2時,試說明集合S具有性質(zhì)P,并寫出相應(yīng)的P子集S1,S2;
(Ⅱ)若集合S具有性質(zhì)P,集合T是集合S的一個P子集,設(shè)T′={s+3n|s∈T},求證:?x,y∈T∪T′,x>y,都有x-y∉T∪T′;
(Ⅲ)求證:對任意正整數(shù)n≥2,集合S具有性質(zhì)P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為12πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為了引導(dǎo)居民合理用水,某市決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價,具體劃分標(biāo)準(zhǔn)如表:
 階梯級別第一階梯水量 第二階梯水量 第三階梯水量 
 月用水量范圍(單位:立方米)(0,10](10,15] (15,+∞)
從本市隨機抽取了10戶家庭,統(tǒng)計了同一月份的月用水量,得到如圖所示的莖葉圖:
(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數(shù)X的分布列與數(shù)學(xué)期望;
(2)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到n戶月用水量為二階的可能性最大,求n的值.

查看答案和解析>>

同步練習(xí)冊答案