10.已知集合A={x|1≤ax≤2},B={x||x|≤1},是否存在實數(shù)a,使得A⊆B?求實數(shù)a的取值范圍.

分析 化簡B,由A⊆B討論集合A,A中不等式的解應(yīng)該分三種情況討論,可得實數(shù)a的取值范圍.

解答 解:B={x||x|≤1}={x|-1≤x≤1}.
當(dāng)a=0時,A=∅,滿足A⊆B;
若a<0,則A={x|1≤ax≤2}={x|$\frac{2}{a}$≤x≤$\frac{1}{a}$},
A⊆B,則-1≤$\frac{2}{a}$且$\frac{1}{a}$≤1,∴a≤-2;
若a>0,則A={x|1≤ax≤2}={x|$\frac{1}{a}$≤x≤$\frac{2}{a}$},
A⊆B,則-1≤$\frac{1}{a}$且$\frac{2}{a}$≤1,∴a≥2.
故由A⊆B得,a的取值范圍是{a|a≤-2,或a≥2或a=0}.

點評 本題考查了分類討論的數(shù)學(xué)思想,注意分類的標(biāo)準(zhǔn),同時考查了集合的化簡與集合之間包含關(guān)系的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.復(fù)數(shù)z=(3+2i)i(i為虛數(shù)單位)的模為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的定義域為R,值域為[-4,8],圖象經(jīng)過點(0,5),直線x=$\frac{π}{6}$是其圖象的一條對稱軸,且f(x)在($\frac{π}{3}$,$\frac{π}{2}$)上單調(diào)遞減.
(I)求函數(shù)f(x)的表達式.
(Ⅱ)已知α∈($\frac{π}{6}$,$\frac{π}{2}$),且f(α)=4,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下列函數(shù)的導(dǎo)數(shù).
(1)y=x2sinx;
(2)y=3xex-2x+e;
(3)y=$\frac{lnx}{{x}^{2}+1}$;
(4)y=cos32x+ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.?dāng)?shù)列{an}為等比數(shù)列,Sn是數(shù)列{an}的前n項和,且Sn>0,a6是a5、a4的等差中項,則數(shù)列{an}的公比q為(  )
A.-$\frac{1}{2}$或1B.$\frac{1}{2}$或1C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等比數(shù)列的前n項和也構(gòu)成一個等比數(shù)列,即Sn,S2n-Sn,S3n-S2n,…為等比數(shù)列,公比為qn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.經(jīng)過點(-3,0),且方向向量為$\overrightarrow{v}$=(5,-2)的直線l的方程是2x+5y+6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知x、y、z∈(0,+∞),且3x=4y=6z
(1)求證:$\frac{1}{x}$+$\frac{1}{2y}$=$\frac{1}{z}$
(2)比較3x、4y、6z的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題P:若x>y則-x>-y,命題q:若x>y,則x2>y2.在命題:①p∧q,②¬p∨¬q③p∧(¬q),④(¬p)∨q中,真命題是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習(xí)冊答案