18.求下列函數(shù)的導數(shù).
(1)y=x2sinx;
(2)y=3xex-2x+e;
(3)y=$\frac{lnx}{{x}^{2}+1}$;
(4)y=cos32x+ex

分析 根據(jù)導數(shù)的運算法則和復合函數(shù)的求導方法求解即可.

解答 解:(1)y′=2xsinx+x2cosx;
(2)y′=3xexln3e-2xln2=3xex(ln3+1)-2xln2;
(3)y′=$\frac{\frac{1}{x}({x}^{2}+1)-2xlnx}{({x}^{2}+1)^{2}}$=$\frac{{x}^{2}-2{x}^{2}lnx+1}{x({x}^{2}+1)^{2}}$;
(4)y′=3cos22x•(-sin2x)•2+ex
=-3sin4xcos2x+ex

點評 本題主要考查導數(shù)的運算法則和復合函數(shù)的求導方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,則輸出的S的值是( 。
A.$\frac{9}{2}$B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若在區(qū)間[-1,2]中隨機地取一個數(shù)x,則事件“0≤x≤2”發(fā)生的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.數(shù)列9,-2,-10,3的前3項和S3=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知三點A(3,2),B(5,-3),C(-1,3),以P(2,-1)為圓心作一個圓,使A,B、C三點中一點在圓外,一點在圓上,一點在圓內(nèi),求這個圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{BQ}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{PQ}$=( 。
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合A={x|1≤ax≤2},B={x||x|≤1},是否存在實數(shù)a,使得A⊆B?求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知等比數(shù)列{an}的各項均為正數(shù),且滿足a3=a1+2a2,則$\frac{{a}_{9}+{a}_{10}}{{a}_{7}+{a}_{8}}$等于( 。
A.2+3$\sqrt{2}$B.2+2$\sqrt{2}$C.3-2$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a>0,且a≠1,下列函數(shù)中,在其定義域內(nèi)是單調(diào)函數(shù)而且又是奇函數(shù)的是( 。
A.y=sinaxB.y=logax2C.y=ax-a-xD.y=tanax

查看答案和解析>>

同步練習冊答案