14.已知點(diǎn)M是圓心為E的圓(x+$\sqrt{3}$)2+y2=16上的動(dòng)點(diǎn),點(diǎn)F($\sqrt{3}$,0),線段MF的垂直平分線交EM于點(diǎn)P.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過原點(diǎn)O作直線l交(Ⅰ)中的軌跡C于點(diǎn)A,B,點(diǎn)D滿足$\overrightarrow{FD}$=$\overrightarrow{FA}$+$\overrightarrow{FB}$,試求四邊形AFBD的面積的取值范圍.

分析 (Ⅰ)得到|PM|=|PF|,求出點(diǎn)P的軌跡是橢圓,其中2a=4,c=$\sqrt{3}$,求出橢圓方程即可;
(Ⅱ)求出SAFBD=2S△AFB,通過討論AB是短軸、AB是長(zhǎng)軸的情況,求出四邊形的面積即可.

解答 解:(Ⅰ)由于點(diǎn)P為線段MF的垂直平分線,
故|PM|=|PF|,
故|PE|+|PF|=|PE|+|PM|=|ME|=4>2$\sqrt{3}$,
故點(diǎn)P的軌跡是橢圓,其中2a=4,c=$\sqrt{3}$,
因此P點(diǎn)的軌跡C的方程是:$\frac{{x}^{2}}{4}$+y2=1;
(Ⅱ)由$\overrightarrow{FD}$=$\overrightarrow{FA}$+$\overrightarrow{FB}$,知四邊形AFBD是平行四邊形,
故SAFBD=2S△AFB,
(1)AB是短軸時(shí),
S△AFB=$\frac{1}{2}$|AB|•|OF|=$\frac{1}{2}$×2×$\sqrt{3}$=$\sqrt{3}$
即SAFBD=2$\sqrt{3}$;
(2)AB是長(zhǎng)軸時(shí),易知AFBD不是四邊形,故AB斜率不是0;
(3)直線AB的斜率存在且不是0時(shí),設(shè)其斜率為k,
則直線AB的方程是:y=kx(k≠0),
設(shè)A(x1,y1),B(x2,y2),
聯(lián)立方程組$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}{+y}^{2}=1}\\{y=kx}\end{array}\right.$,消去x得:
(1+4k2)y2-4k2=0,
故y1+y2=0,y1y2=$\frac{-{4k}^{2}}{1+{4k}^{2}}$,
SAFBD=2S△ABF=2×$\frac{1}{2}$|OF|•|y1-y2|=$\sqrt{3}$•$\sqrt{{{(y}_{1}{+y}_{2})}^{2}-{{4y}_{1}y}_{2}}$=$\sqrt{3}$•$\sqrt{\frac{1{6k}^{2}}{1+{4k}^{2}}}$=$\frac{4\sqrt{3}}{\sqrt{\frac{1}{{k}^{2}}+4}}$,
而$\frac{1}{{k}^{2}}$+4>4,故0<$\frac{4\sqrt{3}}{\sqrt{\frac{1}{{k}^{2}}+4}}$<$\frac{4\sqrt{3}}{\sqrt{4}}$=2$\sqrt{3}$,
綜上,四邊形AFBD的面積的取值范圍是(0,2$\sqrt{3}$].

點(diǎn)評(píng) 本題考查了橢圓的軌跡方程,考查分類討論思想以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若關(guān)于x的方程2sin(2x+$\frac{π}{6}$)=m在[0,$\frac{π}{2}$]上有兩個(gè)不等實(shí)根,則m的取值范圍是( 。
A.(1,$\sqrt{3}$)B.[0,2]C.[1,2)D.[1,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{1,x有理數(shù)}\\{0,x為無理數(shù)}\end{array}}\right.$,則關(guān)于函數(shù)f(x)有以下四個(gè)命題( 。
①?x∈R,f(f(x))=1;
②?x0,y0∈R,f(x0+y0)=f(x0)+f(y0);
③函數(shù)f(x)是偶函數(shù);
④函數(shù)f(x)是周期函數(shù).
其中真命題的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{OA}=(3,1)$,$\overrightarrow{OB}=(-1,3)$,$\overrightarrow{OC}=m\overrightarrow{OA}-n\overrightarrow{OB}$(m>0,n>0),若m+n∈[1,2],則$|\overrightarrow{OC}|$的取值范圍是( 。
A.$[\sqrt{5},2\sqrt{5}]$B.$[\sqrt{5},2\sqrt{10})$C.$(\sqrt{5},\sqrt{10})$D.$[\sqrt{5},2\sqrt{10}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=(x-2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)$a∈(0,\frac{1}{4})$時(shí),求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象如圖所示,其中A(-$\frac{5π}{12}$,0),B($\frac{π}{12}$,0),則函數(shù)f(x)的單調(diào)增區(qū)間為( 。
A.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)B.[$\frac{π}{3}$+kπ,$\frac{5π}{6}$+kπ](k∈Z)
C.[-$\frac{π}{6}$+2kπ,$\frac{π}{3}$+2kπ](k∈Z)D.[$\frac{π}{3}$+2kπ,$\frac{5π}{6}$+2kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.每年的4月23日為世界讀書日,為調(diào)查某高校學(xué)生(學(xué)生很多)的讀書情況,隨機(jī)抽取了男生,女生各20人組成的一個(gè)樣本,對(duì)他們的年閱讀量(單位:本)進(jìn)行了統(tǒng)計(jì),分析得到了男生年閱讀量的頻率分布表和女生閱讀量的頻率分布直方圖.
男生年閱讀量的頻率分布表(年閱讀量均在區(qū)間[0,60]內(nèi)):
本/年[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
頻數(shù)318422
(Ⅰ)根據(jù)女生的頻率分布直方圖估計(jì)該校女生年閱讀量的中位數(shù);
(Ⅱ)在樣本中,利用分層抽樣的方法,從男生年與度量在[20,30),[30,40)的兩組里抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求[30,40)這一組中至少有1人被抽中的概率;
(Ⅲ)若年閱讀量不小于40本為閱讀豐富,否則為閱讀不豐富,依據(jù)上述樣本研究閱讀豐富與性別的關(guān)系,完成下列2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為月底豐富與性別有關(guān).
性別    閱讀量豐富不豐富合計(jì)
   
   
合計(jì)   
P(K2≥k00.0250.0100.005
k05.0246.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},則集合A∩B=( 。
A.{8,10}B.{8,12}C.{8,14}D.{8,10,14}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定積分$\int_{1}^{3}{(2x-\frac{1}{x})}\;dx$=(  )
A.10-ln3B.8-ln3C.$\frac{22}{3}$D.$\frac{64}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案