5.已知復(fù)數(shù)z滿足z+|z|=2+8i,其中i為虛數(shù)單位,則|z|=17.

分析 設(shè)出z=a+bi(a,b∈R),代入z+|z|,然后列出方程組,求解即可得a,b的值,再由復(fù)數(shù)求模公式即可得答案.

解答 解:設(shè)z=a+bi(a,b∈R),
則z+|z|=a+bi+$\sqrt{{a}^{2}+^{2}}$=2+8i,
∴$\left\{\begin{array}{l}{a+\sqrt{{a}^{2}+^{2}}=2}\\{b=8}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-15}\\{b=8}\end{array}\right.$.
則|z|=$\sqrt{(-15)^{2}+{8}^{2}}=17$.
故答案為:17.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)求模,考查了復(fù)數(shù)相等的基本條件,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)$f(x)=\frac{{{x^4}+k{x^2}+1}}{{{x^4}+{x^2}+1}}\;(k∈R)$,若對(duì)任意三個(gè)實(shí)數(shù)a、b、c,均存在一個(gè)以f(a)、f(b)、f(c)為三邊之長(zhǎng)的三角形,則k的取值范圍是(  )
A.-2<k<4B.$-\frac{1}{2}<k<4$C.-2<k≤1D.$-\frac{1}{2}<k≤1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖的程序圖的算法思路中是一種古老而有效的算法--輾轉(zhuǎn)相除法,執(zhí)行改程序框圖,若輸入的m,n的值分別為30,42,則輸出的m=( 。
A.0B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(m,1).若向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{2π}{3}$,則實(shí)數(shù)m=(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-$\sqrt{3}$或0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若a=$\frac{\sqrt{3}}{2}$cos5°-$\frac{1}{2}$sin5°,b=2sin27°•cos27°,c=$\sqrt{\frac{1+cos48°}{2}}$,則a、b、c的大小關(guān)系是(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知各項(xiàng)皆為正數(shù)的等比數(shù)列{an}(n∈N*),滿足a7=a6+2a5,若存在兩項(xiàng)am、an使得$\sqrt{{a_m}{a_n}}$=4a1,則$\frac{1}{m}$+$\frac{4}{n}$的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=2x+1
(1)求f(x)與g(x)的解析式;
(2)若定義在實(shí)數(shù)集R上的以2為最小正周期的周期函數(shù)φ(x),當(dāng)-1≤x≤1時(shí),φ(x)=f(x),試求φ(x)在閉區(qū)間[2015,2016]上的表達(dá)式,并證明φ(x)在閉區(qū)間[2015,2016]上單調(diào)遞減;
(3)設(shè)h(x)=x2+2mx+m2-m+1(其中m為常數(shù)),若h(g(x))≥m2-m-1對(duì)于x∈[1,2]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知拋物線y2=2px(p>0)與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$有相同的焦點(diǎn)F,點(diǎn)A是兩曲線的一個(gè)交點(diǎn),且AF⊥x軸,若l為雙曲線一、三象限的一條漸近線,則l的傾斜角所在的區(qū)間可能是( 。
A.$({0,\frac{π}{6}})$B.$({\frac{π}{6},\frac{π}{4}})$C.$({\frac{π}{4},\frac{π}{3}})$D.$({\frac{π}{3},\frac{π}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若直線l⊥平面α,直線a?α,則l與a的位置關(guān)系是垂直.

查看答案和解析>>

同步練習(xí)冊(cè)答案