【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻(xiàn).為調(diào)查中學(xué)生對這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”他們的調(diào)查結(jié)果如下:

(1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(ⅰ)求抽取的文科生和理科生的人數(shù);

(ⅱ)從10人的樣本中隨機(jī)抽取兩人,求兩人都是文科生的概率.

參考數(shù)據(jù):

【答案】(1)列聯(lián)表見解析,沒有;(2)(ⅰ)3人,7人;(ⅱ).

【解析】

(1)通過調(diào)查結(jié)果表可以知道:理科生中不太了解有28人,比較了解有42人,共計70人,文科生中不太了解有18人,比較了解有12人,共計30人,這樣可以完成列聯(lián)表的填寫,再根據(jù)的計算公式求出,然后根據(jù)所給的數(shù)據(jù)做出解答;

2)(。└鶕(jù)理科生與文科生的人數(shù)之比,可以求出抽取的文科生和理科生的人數(shù);

(ⅱ)記“兩人都是文科生”為事件,記樣本中的3名文科生為,7名理科生為,從10人的樣本中隨機(jī)抽取兩人,用列舉法列出基本事件,然后求出.

(1)依題意填寫列聯(lián)表如下:

計算,

∴沒有99%的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)

(2)(ⅰ)抽取的文科生人數(shù)是(人),理科生人數(shù)是(人).

(ⅱ)記“兩人都是文科生”為事件,記樣本中的3名文科生為,7名理科生為,從10人的樣本中隨機(jī)抽取兩人,則所有的基本事件有:

;

;

;

;

;

;

,

共45種,

兩人都是文科生的基本事件有:,共3種,

故由古典概型得,兩人都是文科生的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面,,DE AC,AD=BD=1.

(Ⅰ)AB的長;

(Ⅱ)已知,求點(diǎn)E到平面BCD的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,圖2是某城市1月至8月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級, 一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面四種說法正確的是( )

①1月至8月空氣合格天數(shù)超過20天的月份有5個

②第二季度與第一季度相比,空氣達(dá)標(biāo)天數(shù)的比重下降了

③8月是空氣質(zhì)量最好的一個月

④6月份的空氣質(zhì)量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在直二面角中,四邊形是邊長為的正方形,,且.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在線段(不包含端點(diǎn))上是否存在點(diǎn),使得與平面所成的角為;若存在,寫出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是正方形,頂點(diǎn)在底面的射影是底面的中心,且各頂點(diǎn)都在同一球面上,若該四棱錐的側(cè)棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于(參考公式:)( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線處切線的斜率為,求此切線方程;

(2)若有兩個極值點(diǎn),求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,當(dāng)時,對于任意的實(shí)數(shù),都有不等式成立,則實(shí)數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)y=ex,曲線y=ex在與坐標(biāo)軸交點(diǎn)處的切線方程為y=x+1,由于曲線 y=ex在切線y=x+1的上方,故有不等式ex≥x+1.類比上述推理:對于函數(shù)y=lnx(x>0),有不等式( 。

A. lnx≥x+1(x>0)B. lnx≤1﹣x(x>0)

C. lnx≥x﹣1(x>0)D. lnx≤x﹣1(x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)行如圖所示的程序框圖,若輸出的的值為71,則判斷框中可以填( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案