17.求焦點在x軸上,過點M(6,2),且滿足a=3b的橢圓的標(biāo)準(zhǔn)方程.

分析 設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),由橢圓經(jīng)過過點M(6,2),可得$\frac{36}{{a}^{2}}+\frac{4}{^{2}}$=1,又a=3b,聯(lián)立解出即可得出.

解答 解:設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),
∵橢圓經(jīng)過過點M(6,2),∴$\frac{36}{{a}^{2}}+\frac{4}{^{2}}$=1,又a=3b,
聯(lián)立解得:b2=8,a2=72.
∴橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{72}+\frac{{y}^{2}}{8}$=1.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程、方程的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.要得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象,可將函數(shù)y=sin2x的圖象向右平移$\frac{π}{6}$個單位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{1-2i}{a+i}$的實部與虛部互為相反數(shù),則實數(shù)a=(  )
A.-1B.1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}為正項等差數(shù)列,滿足$\frac{1}{{a}_{1}}$+$\frac{4}{{a}_{2k-1}}$≤1(其中k∈N*,且k≥2),則ak的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.m變化時,兩平行線3x-4y+m-1=0和3x一4y+m2=0之間距離的最小值等于$\frac{3}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.計算$\frac{1}{(x+1)(x+2)}$+$\frac{1}{(x+2)(x+3)}$+$\frac{1}{(x+3)(x+4)}$+…+$\frac{1}{(x+2015)(x+2016)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等比數(shù)列{an}中,
(1)若Sn=189,q=2,an=96,求a1和n;
(2)若a1+a3=10,a4+a6=$\frac{5}{4}$,求a4和S5;
(3)若q=2,S4=1,求S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)$\overrightarrow{a}$=(4,3),$\overrightarrow{a}$在$\overrightarrow$上的投影為$\frac{5\sqrt{2}}{2}$,$\overrightarrow$在x軸上的投影為2,且|$\overrightarrow$|<14,則$\overrightarrow$為(2,-$\frac{2}{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在北京召開的國際數(shù)學(xué)家大會會標(biāo)如圖所示,它是由4個相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是$\frac{1}{25}$,則sin2θ-cos2θ的值等于( 。
A.1B.-$\frac{7}{25}$C.$\frac{7}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

同步練習(xí)冊答案