1.設(shè)全集U={1,2,3,4,5},若∁UA={1,2,4},則集合A={3,5}.

分析 根據(jù)補(bǔ)集的性質(zhì)建立方程關(guān)系即可求解集合A.

解答 解:全集U={1,2,3,4,5},
若∁UA={1,2,4},
則集合A={3,5}.
故答案為:{3,5}.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,補(bǔ)集的性質(zhì).屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,該程序運(yùn)行后輸出的結(jié)果S為( 。
A.28B.19C.10D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.y=sin(2x+φ)(0<φ<π)為偶函數(shù),則其單調(diào)遞減區(qū)間為[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知△ABC內(nèi)接于以原點(diǎn)O為圓心半徑為1的圓,若2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$+$\sqrt{7}\stackrel{?}{OC}$=0,則∠ACB=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)關(guān)于x的方程x2-mx-1=0有兩個(gè)實(shí)根α,β,α<β,函數(shù)f(x)=$\frac{2x-m}{{x}^{2}+1}$.若λ,μ均為正實(shí)數(shù),則|f($\frac{λα+μβ}{λ+μ}$)-f($\frac{μα+λβ}{λ+μ}$)|( 。﹟α-β|
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=e,則f(x2)=( 。
A.e2B.eC.$\sqrt{e}$D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0的兩側(cè),給出下列命題:
①2a-3b+1>0;   ②a≠0時(shí),$\frac{a}$有最小值,無最大值;
③存在正實(shí)數(shù)m,使得$\sqrt{{a}^{2}+^{2}}$>m恒成立;
④a>0且a≠1,b>0時(shí),則$\frac{a-1}$的取值范圍是(-∞,-$\frac{1}{3}$)∪($\frac{2}{3}$,+∞).
其中正確的命題是( 。
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)$f(x)=\frac{3cosx+1}{2-cosx}(-\frac{π}{3}<x<\frac{π}{3})$,則f(x)的值域?yàn)?(\frac{5}{3},4]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=sinx+cos2x的值域是[-2,$\frac{9}{8}$].

查看答案和解析>>

同步練習(xí)冊答案