設數列{an}的前n項和為Sn=2n2,{bn}為等比數列,且a1=b1,b1(a2-a1)=b2.
(1)求數列{an}和{bn}的通項公式;
(2)設cn=an bn,求數列{cn}的前n項和Tn.
(1)an=4n-2,bn=b1qn-1=2.4n-1
(2)Tn=[(6n-5)4n+5]
解析試題分析:解析: (1)當n≥2時,
an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
當n=1時,a1=S1=2滿足上式,
故{an}的通項式為an=4n-2. -2分
設{bn}的公比為q,由已知條件b1(a2-a1)=b2知,b1=2,b2=8,所以q=4,
∴bn=b1qn-1=2.4n-1 5分
(2)∵cn=(2n-1)4n-1,
∴Tn=c1+c2+…+cn=[1+3×41+5×42+…+(2n-1)4n-1].
4Tn=[1×4+3×42+5×42+…+(2n-3)4n-1+(2n-1)4n].
兩式相減得:
3Tn=-1-2(41+42+43+…+4n-1)+(2n-1)4n
=[(6n-5)4n+5].
∴Tn=[(6n-5)4n+5]. 12分
考點:等差數列和等比數列
點評:主要是考查了等差數列和等比數列的通項公式以及數列的求和 綜合運用,屬于中檔題。
科目:高中數學 來源: 題型:解答題
已知點在函數圖象上,過點的切線的方向向量為(>0).
(Ⅰ)求數列的通項公式,并將化簡;
(Ⅱ)設數列的前n項和為Sn,若≤Sn對任意正整數n均成立,求實數的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設滿足以下兩個條件的有窮數列為階“期待數列”:
①;②.
(1)若等比數列為 ()階“期待數列”,求公比;
(2)若一個等差數列既是 ()階“期待數列”又是遞增數列,求該數列的通項公式;
(3)記階“期待數列”的前項和為:
(。┣笞C:;
(ⅱ)若存在使,試問數列能否為階“期待數列”?若能,求出所有這樣的數列;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,為正整數.
(Ⅰ)求和的值;
(Ⅱ)數列的通項公式為(),求數列的前項和;
(Ⅲ)設數列滿足:,,設,若(Ⅱ)中的滿足:對任意不小于3的正整數n,恒成立,試求m的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com