9.設(shè)集合P={-1,0,1},$Q=\{x|\sqrt{x}<2\}$,則P∩Q=( 。
A.{-1,0,1}B.{0,1}C.{0}D.{1}

分析 化簡集合B,然后直接利用交集運算求解.

解答 解:集合P={-1,0,1},$Q=\{x|\sqrt{x}<2\}$=[0,4)
∴P∩Q={0,1},
故選:B.

點評 本題考查了交集及其運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,右焦點F(1,0),M,N是橢圓上關(guān)于x軸對稱的兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知Q(2,0),若MF與QN相交于點P,證明:點P在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.經(jīng)市場調(diào)查,某商品在最近90天內(nèi)的銷售量(單位:件)和價格(單位:元)均為時間t(單位:天)的函數(shù),且銷售量近似地滿足f(t)=$\left\{\begin{array}{l}{\frac{1}{4}t+10,1≤t≤40,t∈{N}^{+}}\\{t-20,40<t≤90,t∈{N}^{+}}\end{array}\right.$,價格近似地滿足g(t)=$\left\{\begin{array}{l}{-10t+630,1≤t≤40,t∈{N}^{+}}\\{-\frac{1}{10}{t}^{2}+10t-10,40<t≤90,t∈{N}^{+}}\end{array}\right.$.
(1)寫出該商品的日銷售額S(銷售量與價格之積)與時間t的函數(shù)關(guān)系;
(2)求該商品的日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)實數(shù)a,b均為區(qū)間[0,1]內(nèi)的隨機(jī)數(shù),則關(guān)于x的不等式$b{x^2}+ax+\frac{1}{4}<0$有實數(shù)解的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線y2=2px(p>0)上有兩點A(x1,y1),B(x2,y2
(1)當(dāng)拋物線的準(zhǔn)線方程為$x=-\frac{1}{4}$時,作正方形ABCD使得邊CD直線方程為y=x+4,求正方形的邊長;
(2)拋物線上一定點Px0,y0)(y0>0),當(dāng)PA與PB的斜率存在且傾斜角互補時,求證直線AB的斜率是非零常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若集合A={x∈N|x>1},B={x|-3<x<7},則集合A∩B的元素的個數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\vec a=({sinθ,-2})$,$\vec b=({1,cosθ})$互相垂直,其中$θ∈(0,\frac{π}{2})$;
(1)求tan2θ的值;
(2)若$sin({θ-φ})=\frac{{\sqrt{10}}}{10},0<φ<\frac{π}{2}$,求cosφ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=lnx-\frac{m}{2}{x^2}+x(m∈R)$.
(Ⅰ)當(dāng)m>0時,若$f(x)≤mx-\frac{1}{2}$恒成立,求的取值范圍.
(Ⅱ)當(dāng)m=-1時,若f(x1)+f(x2)=0,求證:${x_1}+{x_2}≥\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx+1.
(1)求函數(shù)f(x)在x∈[e-2,e2]上的最大值與最小值;
(2)若x>1時,$\frac{f(x)}{x}>k恒成立$,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案