6.設(shè)函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),f(xy)=f(x)+f(y),f(3)=1.
(1)求f(9);
(2)求解不等式f(2x)>2+f(x-2).

分析 (1)令x=y=3,利用f(3)=1即可求得f(9)的值;
(2)由條件和(1)的結(jié)論得f(2x)>f(9x-18),再由單調(diào)性得到不等式組,解之即可.

解答 解:(1)∵f(3)=1,
∴f(9)=f(3×3)=f(3)+f(3)=2;
(2)∵函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),
f(xy)=f(x)+f(y),f(9)=2,
∴f(2x)>f(9)+f(x-2),
∴f(2x)>f(9x-18).
∴2x>9x-18>0,
∴2<x<$\frac{18}{7}$,
∴原不等式的解集為:(2,$\frac{18}{7}$).

點(diǎn)評 本題考查抽象函數(shù)及其應(yīng)用,著重考查賦值法與函數(shù)單調(diào)性的應(yīng)用,考查解不等式組的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,若角A,B,C成等差數(shù)列,且邊a=2,c=5,則S△abc=$\frac{5\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x2-25<0},B={-5,0,1},則(  )
A.A∩B=∅B.B⊆AC.A∩B={0,1}D.A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}的通項公式是an=2n-3,那么該數(shù)列中前5項的和為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)$f(x)=\frac{x}{{{e^{2x}}}}$(e=2.71828是自然對數(shù)的底數(shù)).
(1)f(x)的單調(diào)區(qū)間、最大值;
(2)討論關(guān)于x的方程|lnx|=f(x)+c根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.過點(diǎn)(-1,2)且和直線3x+2y-7=0垂直的直線方程是( 。
A.3x+2y-1=0B.2x-3y+8=0C.2x-3y+7=0D.3x-2y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=xlnx,當(dāng)x2>x1>0時,下列結(jié)論中正確的命題的序號是④.
①(x1-x2)•[f(x1-f(x2)]<0;
②$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1;
③f(x1)+x2<f(x2)+x1;
④x2f(x1)<x1f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)命題P:曲線y=e-x在點(diǎn)(-1,e)處的切線方程是:y=-ex;命題q:f′(x)是函數(shù)f(x)的導(dǎo)函數(shù).若f′(x0)=0的充要條件是x0是函數(shù)f(x)的極值點(diǎn).則(  )
A.“p∨q”為真B.“p∧q”為真C.p假q真D.p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.方程f(x)=x的根稱為函數(shù)f(x)的不動點(diǎn),若函數(shù)f(x)=$\frac{x}{a(x+2)}$有唯一不動點(diǎn),且x1=1000,xn+1=$\frac{1}{{f(\frac{1}{x_n})}}$,n=1,2,3,…,則x2015=2007.

查看答案和解析>>

同步練習(xí)冊答案