分析 (Ⅰ)根據(jù)△ABC的面積,結(jié)合平面向量的數(shù)量積求出tanB的值,再求tan2B的值;
(Ⅱ)根據(jù)tanB的值,求出sinB、cosB,再由cosA的值求出sinA,從而求出sinC=sinB,
判斷△ABC是等腰三角形,求出底邊上的中線AD的長.
解答 解:(Ⅰ)△ABC的面積為S,且$\overrightarrow{BA}$•$\overrightarrow{BC}$=S;
∴accosB=$\frac{1}{2}$acsinB,
解得tanB=2;
∴tan2B=$\frac{2tanB}{1{-tan}^{2}B}$=-$\frac{4}{3}$;
(Ⅱ)∵|$\overrightarrow{CA}$-$\overrightarrow{CB}$|=2,∴|$\overrightarrow{BA}$|=2,
又tanB=$\frac{sinB}{cosB}$=2,
sin2B+cos2B=1
∴sinB=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{\sqrt{5}}{5}$;
又cosA=$\frac{3}{5}$,
∴sinA=$\frac{4}{5}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{2\sqrt{5}}{5}$;
∵sinB=sinC,∴B=C,
∴AB=AC=2,
∴中線AD也是BC邊上的高,
∴AD=ABsinB=2×$\frac{2\sqrt{5}}{5}$=$\frac{4\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與三角恒等變換的應(yīng)用問題,也考查了同角的三角函數(shù)關(guān)系與應(yīng)用問題,是綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 169石 | B. | 192石 | C. | 1367石 | D. | 1164石 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1) | B. | (-3,-1) | C. | (1,-3) | D. | (-1,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{n}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | $4+\sqrt{13}$ | D. | $2+\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com