【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成一個(gè)等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過(guò)橢圓的左頂點(diǎn)的兩條直線,分別交橢圓,兩點(diǎn),且,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);

3)在(2)的條件下求面積的最大值.

【答案】(1);(2)證明見(jiàn);解析;定點(diǎn);(3).

【解析】

1)根據(jù)直線與圓相切得圓心到直線距離等于半徑列一個(gè)方程,再根據(jù)等邊三角形性質(zhì)得,解方程組得 ,即得結(jié)果;

2)先設(shè)直線方程,與橢圓方程聯(lián)立分別解得M,N坐標(biāo),再求斜率(注意討論),利用點(diǎn)斜式得直線方程,即得定點(diǎn)坐標(biāo);

3)利用韋達(dá)定理以及弦長(zhǎng)公式得,再根據(jù)三角形面積公式得面積的函數(shù)關(guān)系式,最后根據(jù)基本不等式求最大值.

1)由題意可得:,,

橢圓的方程為:.

2)由題意知,設(shè):,.

消去得:

解得:(舍去),,

,同理可得:.

i:當(dāng)時(shí),直線斜率存在,

,直線過(guò)定點(diǎn).

ii:當(dāng)時(shí),直線斜率不存在,直線方程為:,也過(guò)定點(diǎn),

綜上所述:直線過(guò)定點(diǎn).

3)設(shè),由(2)知:

,

,單調(diào)遞減,

∴當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面上有7個(gè)點(diǎn),每三點(diǎn)的兩兩連線都組成一個(gè)不等邊三角形求證一定可以找到4對(duì)三角形,使每對(duì)三角形的公共邊既是其中一個(gè)三角形的最長(zhǎng)邊又是另一個(gè)三角形的最短邊

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩名射擊運(yùn)動(dòng)員分別對(duì)一目標(biāo)射擊一次,甲射中的概率為0.8,乙射中的概率為0.9,求:

(1)2人都射中目標(biāo)的概率;

(2)2人中恰有1人射中目標(biāo)的概率;

(3)2人至少有1人射中目標(biāo)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0a≠1.

(1)f(x)的定義域;

(2)判斷f(x)的奇偶性并予以證明;

(3)當(dāng)a>1時(shí),求使f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足a1=1,an1an(c>0,n∈N*),

(Ⅰ)證明:an1an≥1;

(Ⅱ)若對(duì)任意n∈N*,都有,證明:()對(duì)于任意m∈N*,當(dāng)nm時(shí),

(ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.某班位同學(xué)從文學(xué)、經(jīng)濟(jì)和科技三類(lèi)不同的圖書(shū)中任選一類(lèi),不同的結(jié)果共有種;

B.甲乙兩人獨(dú)立地解題,已知各人能解出的概率分別是,則題被解出的概率是

C.某校名教師的職稱(chēng)分布情況如下:高級(jí)占比,中級(jí)占比,初級(jí)占比,現(xiàn)從中抽取名教師做樣本,若采用分層抽樣方法,則高級(jí)教師應(yīng)抽取人;

D.兩位男生和兩位女生隨機(jī)排成一列,則兩位女生不相鄰的概率是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某高校學(xué)生喜歡使用手機(jī)支付是否與性別有關(guān),抽取了部分學(xué)生作為樣本,統(tǒng)計(jì)后作出如圖所示的等高條形圖,則下列說(shuō)法正確的是(

A.喜歡使用手機(jī)支付與性別無(wú)關(guān)

B.樣本中男生喜歡使用手機(jī)支付的約

C.樣本中女生喜歡使用手機(jī)支付的人數(shù)比男生多

D.女生比男生喜歡使用手機(jī)支付的可能性大些

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:;

(3)試比較 ,并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn),和平面內(nèi)一點(diǎn)),過(guò)點(diǎn)任作直線與橢圓相交于, 兩點(diǎn),設(shè)直線, 的斜率分別為, , ,試求, 滿(mǎn)足的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案