9.已知奇函數(shù)f(x)在區(qū)間[1,6]是增函數(shù),且最大值為10,最小值為4,則其在[-6,-1]上的最大值、最小值分別是( 。
A.-4,-10B.4,-10C.10,4D.不確定

分析 利用函數(shù)的奇偶性的性質(zhì)寫出結(jié)果即可.

解答 解:奇函數(shù)f(x)在區(qū)間[1,6]是增函數(shù),且最大值為10,最小值為4,則其在[-6,-1]上的最大值、最小值分別是-4,-10.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象關(guān)于直線$x=\frac{π}{32}$對(duì)稱且$f({-\frac{π}{32}})=0$,如果存在實(shí)數(shù)x0,使得對(duì)任意的x都有$f({x_0})≤f(x)≤f({{x_0}+\frac{π}{8}})$,則ω的最小值是( 。
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)$z=\frac{{{{({2-i})}^2}}}{i}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)的模$|{\overline z}|$=(  )
A.5B.25C.4D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥4}\\{f(x+3),x<4}\end{array}\right.$,則f(2)=32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)h(x)=ax3-1(a∈R),g(x)=lnx.
(I)若f(x)=h(x)+3xg(x)圖象過點(diǎn)(1,-1)時(shí),求f(x)的單調(diào)區(qū)間;
(II)函數(shù)F(x)=$({a-\frac{1}{3}}){x^3}$+$\frac{1}{2}{x^2}$g(a)-h(x)-1,當(dāng)a>${e^{\frac{10}{3}}}$(e為自然對(duì)數(shù)的底數(shù))時(shí),函數(shù)F(x)過點(diǎn)A(1,m)的切線F(x)切于點(diǎn)B(x0,F(xiàn)(x0))
①試將m表示成x0的表達(dá)式.
②若切線至少有2條,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.給出下列說法:
①集合A={x∈Z|x=2k-1,k∈Z}與集合B={x∈z|x=2k+3,k∈Z}是相等集合;
②若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
③函數(shù)y=$\frac{1}{{x}^{2}}$的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
④不存在實(shí)數(shù)m,使f(x)=x2+mx+1為奇函數(shù);
⑤若f(x+y)=f(x)f(y),且f(1)=2,則$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2016)}{f(2015)}$=2016.
其中正確說法的序號(hào)是( 。
A.①②③B.②③④C.①③⑤D.①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{ax+b,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,且f(-2)=3,f(-1)=f(1).
( I)求f(x)的解析式;
( II)畫出f(x)的圖象(不寫過程)并求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為$\frac{3}{2}$,其中A(a,0),B(0,-b).
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在y軸正半軸上的端點(diǎn),過B作直線與雙曲線交于M,N兩點(diǎn),求B1M⊥B1N時(shí),直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,已知a2tanB=b2tanA,則△ABC的形狀是( 。
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

同步練習(xí)冊答案