(本小題滿分12分)
已知函數(shù)
(1)若的極值點(diǎn),求上的最大值
(2)若函數(shù)是R上的單調(diào)遞增函數(shù),求實(shí)數(shù)的的取值范圍.

(1)當(dāng)時(shí),函數(shù)有最大值為15. (2)。

解析試題分析:(1)根據(jù)可求出a的值,從而再求出極值,與區(qū)間的端點(diǎn)值比較可求出最大值.
(2) 函數(shù)是R上的單調(diào)遞增函數(shù)可轉(zhuǎn)化為在R上恒成立問(wèn)題來(lái)解決.
(1)解:,,且當(dāng)時(shí)有極值.
可得:               ---------------------- 1分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7b/3/1lajs2.png" style="vertical-align:middle;" />             所以          -------- 2分
          -------------------------  3分
當(dāng)時(shí),,
如表所示:


1

3

5

 

0
+
 

-1
單調(diào)遞減
極小值
單調(diào)遞增
15
由表可知:
當(dāng)時(shí),函數(shù)有最大值為15.      ------------------------------ 6分
(2)解:  為在上的單調(diào)遞增函數(shù)
       所以  ≥0在R上恒成立,
因此            &nbs

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
設(shè)點(diǎn)P在曲線上,從原點(diǎn)向A(2,4)移動(dòng),如果直線OP,曲線及直線x=2所圍成的面積分別記為。

(Ⅰ)當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)有最小值時(shí),求點(diǎn)P的坐標(biāo)和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分16分)
已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為,函數(shù),
(其中均為常數(shù),且),當(dāng)時(shí),函數(shù)取得極小值.
均在函數(shù)的圖像上(其中的導(dǎo)函數(shù)).
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分15分)過(guò)曲線C:外的點(diǎn)A(1,0)作曲線C的切線恰有兩條,
(Ⅰ)求滿足的等量關(guān)系;
(Ⅱ)若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分) 已知為實(shí)數(shù),,
(Ⅰ)若a=2,求的單調(diào)遞增區(qū)間;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),(),曲線在點(diǎn)處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問(wèn):在什么范圍取值時(shí),對(duì)于任意的,函數(shù)g(x)=x3 +x2在區(qū)間上總存在極值?
(Ⅲ)當(dāng)時(shí),設(shè)函數(shù),若在區(qū)間上至少存在一個(gè)
使得成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱;
證明:當(dāng)時(shí),
(3)如果,證明

查看答案和解析>>

同步練習(xí)冊(cè)答案