(本小題滿分12分) 已知為實數(shù),,
(Ⅰ)若a=2,求的單調遞增區(qū)間;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。

(Ⅰ),(Ⅱ)最大值為最小值為

解析試題分析:(Ⅰ)由,得
所以當a=2時f(x)的單調遞增區(qū)間為 (6分)
(Ⅱ)由原式得
 得,此時有.
或x="-1" , 又
所以f(x)在[-2,2]上的最大值為最小值為      (12分)
考點:函數(shù)的單調性和最值
點評:利用函數(shù)的導數(shù)可以求單調區(qū)間,極值,最值等問題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(Ⅰ)若,求的最小值;
(Ⅱ)若,討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù),.
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設函數(shù),求函數(shù)的單調區(qū)間;
(Ⅲ)若在區(qū)間上不存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分) 已知函數(shù),函數(shù)
(I)當時,求函數(shù)的表達式;
(II)若,且函數(shù)上的最小值是2 ,求的值;
(III)對于(II)中所求的a值,若函數(shù),恰有三個零點,求b的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若的極值點,求上的最大值
(2)若函數(shù)是R上的單調遞增函數(shù),求實數(shù)的的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知:,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是實數(shù),函數(shù)
(1)若,求的值及曲線在點處的切線方程;
(2)求在區(qū)間上的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題14分)
設函數(shù)
(1)求函數(shù)的單調遞增區(qū)間;
(2)若關于的方程在區(qū)間內恰有兩個相異的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且函數(shù)處都取得極值。
(1)求實數(shù)的值;
(2)求函數(shù)的極值;
(3)若對任意,恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案