11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,f(-2)+f(log210)=( 。
A.11B.8C.5D.2

分析 由函數(shù)性質(zhì)先求出f(-2)和f(log210),由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(2-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,
∴f(-2)=1+log24=1+2=3,
$f(lo{g}_{2}10)={2}^{lo{g}_{2}10}÷2$=5,
∴f(-2)+f(log210)=3+5=8.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a7+a11=6,則S13等于( 。
A.24B.25C.26D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.近年來(lái),隨著私家車(chē)數(shù)量的不斷增加,交通違法現(xiàn)象也越來(lái)越嚴(yán)重,孝感市交警大隊(duì)在某天17:00~20:00這一時(shí)段內(nèi),開(kāi)展整治酒駕專(zhuān)項(xiàng)行動(dòng),采取蹲點(diǎn)守候隨機(jī)抽查的方式,每隔3分鐘檢查一輛經(jīng)過(guò)的私家車(chē).這種抽樣方法屬于( 。
A.簡(jiǎn)單隨機(jī)抽樣B.系統(tǒng)抽樣C.分層抽樣D.定點(diǎn)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.二進(jìn)制數(shù)11011100(2)化為十進(jìn)制數(shù)是220,再化為八進(jìn)制數(shù)是334(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥25對(duì)任意正實(shí)數(shù)x,y恒成立,則正實(shí)數(shù)a的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x0=$\left\{\begin{array}{l}{{2}^{x}-1(x≤0)}\\{|x-1|-1(x>0)}\end{array}\right.$.
(1)畫(huà)出y=f(x)的圖象,并指出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;  
 (2)解不等式f(x-1)≤-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=f(x)在[1,3]上單調(diào)遞減,且函數(shù)f(x+3)是偶函數(shù),則下列結(jié)論成立的是( 。
A.f(2)<f(π)<f(5)B.f(π)<f(2)<f(5)C.f(2)<f(5)<f(π)D.f(5)<f(π)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長(zhǎng)為2的兩個(gè)全等的等腰直角三角形,俯視圖是圓心角為$\frac{π}{2}$的扇形,則該幾何體的側(cè)面積為( 。
A.2B.4+πC.4+$\sqrt{2}$πD.4+π+$\sqrt{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知正數(shù)x、y滿(mǎn)足x+y=3,則$\frac{4}{x}$+$\frac{1}{y+1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案