數(shù)列{an}中滿足a1=1,且對(duì)于任意的正整數(shù)都有an+1=an+n,則
1
an
=
 
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:對(duì)于任意的正整數(shù)都有an+1=an+n,利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-1)+(n-2)+…+2+1+1即可得出.
解答: 解:∵對(duì)于任意的正整數(shù)都有an+1=an+n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(n-1)+(n-2)+…+2+1+1
=
(n-1)n
2
+1=
n2-n+2
2

1
an
=
2
n2-n+2

故答案為:
2
n2-n+2
點(diǎn)評(píng):本題考查了“累加求和”、等差數(shù)列的前n項(xiàng)和公式,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2cos2x+sin2x+1的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)全集U=N,集合A={1,3,5,7,8},B={1,2,3,4,5},則圖中陰影部分表示的集合為(  
A、{2,4}
B、{7,8}
C、{1,3,5}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某旅行社組團(tuán)最大接團(tuán)能力為75人,若每團(tuán)人數(shù)在30人或30人以下,飛機(jī)票每張收費(fèi)900元;若每團(tuán)人數(shù)多于30人,則給予優(yōu)惠:每多1人,機(jī)票每張減少10元,每團(tuán)乘飛機(jī),旅行社需付給航空公司包機(jī)費(fèi)15000元.
(1)寫出飛機(jī)票的價(jià)格關(guān)于人數(shù)的函數(shù);
(2)每團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}各項(xiàng)均不為0,且滿足關(guān)系式an=
3an-1
an-1+3
(n≥2).
(1)求證數(shù)列{
1
an
}
為等差數(shù)列;
(2)當(dāng)a1=
1
2
時(shí),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足2an+1+an=3(n∈N*),且a1=7,其前n項(xiàng)和為Sn,則滿足不等式|Sn-n-4|<
1
2014
的最小整數(shù)n是(  )
A、11B、12C、13D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+
2-3a
2
x2
+bx(a,b為常數(shù))
(1)若y=f(x)的圖象在x=2處的切線方程為x-y+6=0,求函數(shù)f(x)的解析式;
(2)在(1)的條件下,求函數(shù)y=f(x)的圖象與y=-
1
2
[f′(x)-9x-3]+m的圖象交點(diǎn)的個(gè)數(shù);
(3)當(dāng)a=1時(shí),?x∈(0,+∞),lnx≤f'(x)恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=xe2x-1在點(diǎn)(1,e)處切線的斜率等于( 。
A、2eB、eC、3eD、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①直線垂直于一個(gè)平面內(nèi)的無數(shù)條直線是這條直線與這個(gè)平面垂直的充要條件;
②過空間一定點(diǎn)有且只有一條直線與已知平面垂直;
③不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行是這條直線和這個(gè)平面平行的充分條件;
其中真命題有幾個(gè)( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案