如圖是2012年元旦晚會舉辦的挑戰(zhàn)主持人大賽上,七位評委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的眾數(shù)和中位數(shù)分別為(  )
A、85,84
B、84,84
C、84,85
D、85,85
考點(diǎn):莖葉圖,眾數(shù)、中位數(shù)、平均數(shù)
專題:
分析:根據(jù)莖葉圖可以得到一組數(shù)據(jù),再根據(jù)眾數(shù)和中位數(shù)的定義進(jìn)行求解;
解答: 解:去掉一個(gè)最高分和一個(gè)最低分后,
可剩余的數(shù)為:84,84,85,86,87,
可得眾數(shù)84,中位數(shù)為85,
故選C
點(diǎn)評:本題考查由莖葉圖來求數(shù)據(jù)的特征數(shù),關(guān)鍵是知道特征數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對某種賭博游戲調(diào)查后,發(fā)現(xiàn)其規(guī)則如下:攤主在口袋中裝入8枚黑色和8枚白色的圍棋子,參加者從中隨意一次摸出5枚,摸一次交手續(xù)費(fèi)2元,而中彩情況如下:
摸子情況5枚白4枚白3枚白其它
彩金20元3元紀(jì)念品價(jià)值1元無獎(jiǎng)同樂一次
現(xiàn)在我們試計(jì)算如下問題:
(1)求一次獲得20元彩金的概率;(結(jié)果用最簡分?jǐn)?shù)表示)
(2)分別求一次獲3元和紀(jì)念獎(jiǎng)的概率;(結(jié)果用最簡分?jǐn)?shù)表示)
(3)如果某天有1000次摸獎(jiǎng),估計(jì)攤主是賠錢還是掙錢?大概是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一條直線和一個(gè)平面平行,那么這條直線和這個(gè)平面內(nèi)的直線(  )
A、相交B、平行
C、異面D、平行或異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1-tanA
1+tanA
=
5
,則cot(
π
4
+A)
的值等于( 。
A、-
5
B、
5
C、-
5
5
D、
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-x2-2x+3(-3≤x≤0)的值域是( 。
A、[0,3]
B、[0,4]
C、[3,4]
D、[-1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)定義域?yàn)镈,若滿足:
(1)f(x)在D內(nèi)是單調(diào)函數(shù);
(2)存在[a,b]⊆D,使f(x)在x∈[a,b]時(shí)值域也為[a,b],則稱f(x)為D上的閉函數(shù).
當(dāng)f(x)=2k+
x+4
時(shí),k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1-
1-x
x
   (x<0)
a(x2+1)     (x≥0)
在(-∞,+∞)上連續(xù)且單調(diào),則a的值為( 。
A、-1
B、1
C、
1
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=1ogax,x∈[2,4]的值域?yàn)閇b,b+1],求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
1
2x+
2
,求f(-5)+f(-4)+…+f(5)+f(6)的值.

查看答案和解析>>

同步練習(xí)冊答案