1.在四邊形ABCD中,AB=6,BD=3$\sqrt{3}$,BC=4,∠ADB=∠CBD,A=60°,則△BCD的面積為6$\sqrt{3}$.

分析 在△ABD中使用正弦定理得出∠ADB,即∠CBD的值,代入面積公式計算即可.

解答 解在△ABD中,由正弦定理得:$\frac{AB}{sin∠ADB}=\frac{BD}{sinA}$,
∴sin∠ADB=$\frac{AB•sinA}{BD}$=1,∴sin∠ADB=sin∠CBD=1.
∴S△BCD=$\frac{1}{2}BC×BD×sin∠CBD$=$\frac{1}{2}×4×3\sqrt{3}×1$=6$\sqrt{3}$
故答案為:6$\sqrt{3}$.

點評 本題考查了正弦定理,三角形的面積公式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.在△ABC外,分別以AC、BC、AB為邊作正方形,得到三個正方形的面積依次為S1、S2、S3,若S1+S2=S3=8,則△ABC的面積最大值是( 。
A.2B.$\sqrt{2}$C.4D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖是60名學生參加數(shù)學競賽的成績(均為整數(shù))的頻率分布直方圖,估計這次數(shù)學競賽的及格率是( 。
A.75%B.25%C.15%D.40%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知向量$\overrightarrow a=(1,t),\overrightarrow b=(t,9)$,若$\overrightarrow a∥\overrightarrow b$,則t=±3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=-cos2x-8sinx+9.則函數(shù)f(x)的最小值為(  )
A.2B.0C.18D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知全集U=R,若集合A={x|$\frac{x}{x-1}>0$},則∁UA=[0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若二項式(x+$\frac{1}{\sqrt{x}}$)6的展開式中的x3項大于15,且x為等比數(shù)列an的公比,則$\underset{lim}{n→∞}\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{{a}_{3}+{a}_{4}+…+{a}_{n}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知雙曲線$\frac{x^2}{3}-{y^2}=1$的左右焦點分別為F1,F(xiàn)2,P為雙曲線右支上一點,點Q的坐標為(-2,3),則|PQ|+|PF1|的最小值為5+$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.(1-x)(1+x)4的展開式中x3系數(shù)為-2.

查看答案和解析>>

同步練習冊答案