9.已知X~B(n,p),且E(X)=6,D(X)=$\frac{9}{2}$,則在(${\sqrt{x}$+$\frac{1}{{\root{3}{x}}}}$)n的展開式中,有理項共有5項.

分析 由于X~B(n,p),且E(X)=6,D(X)=$\frac{9}{2}$,可得np=6,np(1-p)=$\frac{9}{2}$,解得n=24.則在$(\sqrt{x}+\frac{1}{\root{3}{x}})^{24}$的展開式中,利用其通項公式即可得出結(jié)論.

解答 解:∵X~B(n,p),且E(X)=6,D(X)=$\frac{9}{2}$,
∴np=6,np(1-p)=$\frac{9}{2}$,解得n=24.
則在$(\sqrt{x}+\frac{1}{\root{3}{x}})^{24}$的展開式中,通項公式Tr+1=${∁}_{24}^{r}(\sqrt{x})^{24-r}$$(\frac{1}{\root{3}{x}})^{r}$=${∁}_{24}^{r}{x}^{12-\frac{5r}{6}}$,r=0,1,2,…,24.
當且僅當r=0,6,12,18,24時,Tr+1為有理項.
因此有理項共有5項,
故答案為:5.

點評 本題考查了二項分布的性質(zhì)、二項式定理的通項公式及其應用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法中正確的是( 。
A.平行于同一直線的兩個平面平行B.垂直于同一直線的兩個平面平行
C.平行于同一平面的兩條直線平行D.垂直于同一直線的兩條直線平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知實數(shù)x、y滿足$\left\{\begin{array}{l}{x+y-2≥0}\\{y≤x}\\{x≤2}\end{array}\right.$,目標函數(shù)z=x+$\frac{1}{2}$y,則z的最大值為( 。
A.3B.2C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.定義:若曲線τ由橢圓T1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和橢圓T2:$\frac{{y}^{2}}{^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(b>c>0)組成,當a、b、c成等比數(shù)列時,稱曲線τ為“貓眼曲線”.若“貓眼曲線”τ過點P(0,-$\sqrt{2}$),且a、b、c的公比為$\frac{\sqrt{2}}{2}$.
(1)求“貓眼曲線”τ的方程;
(2)任作斜率為k(k≠0)且不過原點的直線與該曲線τ相交,且交橢圓T1所得弦的中點為M,交橢圓T2所得弦的中點為N,設OM、ON的斜率分別是kOM、kON,求$\frac{{k}_{OM}}{{k}_{ON}}$的值;
(3)若斜率為1的直線l交橢圓T1于點A、B,交橢圓T2于點C、D,且滿足$\frac{|AB|}{|CD|}$=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知復數(shù)z=($\frac{1+i}{1-i}$)2014,則在復平面內(nèi)z-i所對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某園林基地培育了一種新觀賞植物,經(jīng)過一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為n)進行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從高度在80厘米以上以上(含80厘米)的植株中隨機抽取2株,求所抽取的2株中至少有一株高度在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.一個無蓋的正方體盒子展開后的平面圖如圖所示,A、B、C是展開圖上的三點,則在正方體盒子中,∠ABC的度數(shù)是( 。
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.設$\overrightarrow{a}$、$\overrightarrow$滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$、$\overrightarrow$夾角大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.函數(shù)f(x)=x2+2(a+2)x+4lnx的圖象上是否存在兩點A(x1,y1)和B(x2,y2)使f′($\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$成立?若存在,請求出x0的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案