分析 根據(jù)平面向量的數(shù)量積公式,求出向量$\overrightarrow{a}$、$\overrightarrow$夾角的余弦值,即可求出它們的夾角大。
解答 解:設(shè)向量$\overrightarrow{a}$、$\overrightarrow$的夾角為θ,
因為$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),
所以$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow$=0,
即12-1×$\sqrt{2}$×cosθ=0,
解得cosθ=$\frac{\sqrt{2}}{2}$;
又θ∈[0,π],
所以θ=$\frac{π}{4}$,
即$\overrightarrow{a}$、$\overrightarrow$的夾角為$\frac{π}{4}$.
故答案為:$\frac{π}{4}$.
點評 本題考查了利用平面向量的數(shù)量積求夾角的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{7}$ | C. | 1 | D. | $-\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或-2 | B. | $\frac{1}{2}$或-$\frac{1}{2}$ | C. | $\frac{1}{2}$或2 | D. | -$\frac{1}{2}$或-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com