【題目】如圖,在四棱錐中,側(cè)面底面,底面為矩形,,為的中點(diǎn),.
(1)求證:;
(2)若與平面所成的角為,求二面角的余弦值.
【答案】(1)證明詳見解析;(2).
【解析】
試題分析:本題主要考查線面垂直的判定、二面角的求解等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、空間想象能力和邏輯推理能力.第一問,利用面面垂直的性質(zhì)先得到線面垂直 平面,從而得到線線垂直,利用線面垂直的判定得平面,最后利用性質(zhì)定理得到;第二問,法一:利用線面及三角形相似等知識(shí)判斷出為直線與平面所成的角,再在三角形中利用余弦定理解題;法二:利用向量法先建立空間直角坐標(biāo)系,利用夾角公式計(jì)算二面角的余弦值.
試題解析:(Ⅰ)證明:連結(jié),因,為的中點(diǎn)
故.
∵側(cè)面 底面
∴ 平面
∴,
∵,∴平面,
∴,
又∵,故 平面
所以.
(Ⅱ)解法一:在矩形中,由(Ⅰ)得,所以,不妨設(shè)則.
∵側(cè)面 底面,底面為矩形
∴平面 平面 ≌
∴為直線與平面所成的角
∴=,=,
∴,∴為等邊三角形,
設(shè)的中點(diǎn)為,連接,則
在中,過作,交于點(diǎn),則為二面角的一個(gè)平面角。
由于=,,所以在中,,
∵
∴
∴
∴
即二面角的余弦值.
解法二:取的中點(diǎn),以為原點(diǎn),,,所在的直線分別為,,軸建立空間直角坐標(biāo)系.不妨設(shè),則,所以,,,,從而,.
設(shè)平面的法向量為,
由,得,
可取.
同理,可取平面的一個(gè)法向量為.
于是,
所以二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集具有性質(zhì);對任意的、,,與兩數(shù)中至少有一個(gè)屬于.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(2)證明:,且;
(3)當(dāng)時(shí),若,求集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=BC=4,BB1=2,點(diǎn)E、F、M分別為C1D1,A1D1,B1C1的中點(diǎn),過點(diǎn)M的平面α與平面DEF平行,且與長方體的面相交,交線圍成一個(gè)幾何圖形.
(1)在圖1中,畫出這個(gè)幾何圖形,并求這個(gè)幾何圖形的面積(不必說明畫法與理由)
(2)在圖2中,求證:D1B⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組為了研究晝夜溫差對一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 9 | 10 | 11 | 8 | 12 |
發(fā)芽數(shù)(顆) | 38 | 30 | 24 | 41 | 17 |
利用散點(diǎn)圖,可知線性相關(guān)。
(1)求出關(guān)于的線性回歸方程,若4月6日星夜溫差,請根據(jù)你求得的線性同歸方程預(yù)測4月6日這一天實(shí)驗(yàn)室每100顆種子中發(fā)芽顆數(shù);
(2)若從4月1日 4月5日的五組實(shí)驗(yàn)數(shù)據(jù)中選取2組數(shù)據(jù),求這兩組恰好是不相鄰兩天數(shù)據(jù)的概率.
(公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù)
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).將的圖象向左平移個(gè)單位長度后所得的函數(shù)為偶函數(shù),則關(guān)于函數(shù),下列命題正確的是( )
A. 函數(shù)在區(qū)間上有最小值 B. 函數(shù)在區(qū)間上單調(diào)遞增
C. 函數(shù)的一條對稱軸為 D. 函數(shù)的一個(gè)對稱點(diǎn)為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若, 是方程()的兩個(gè)不同的實(shí)數(shù)根,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com