已知f(x)=ax3+bx2+cx+d有兩個(gè)極值點(diǎn)x1、x2,且|x1-x2|>|f(x1)-f(x2)|,且f(x1)=x1,則關(guān)于3af(x)2+2bf(x)+c=0的不同實(shí)數(shù)根有
 
個(gè).
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求導(dǎo)數(shù)f′(x),由題意知x1,x2是方程3x2+2ax+b=0的兩根,從而關(guān)于f(x)的方程3(f(x))2+2af(x)+b=0有兩個(gè)根,作出草圖,由圖象可得答案.
解答: 解:∵f(x)=ax3+bx2+cx+d,
∴f′(x)=3ax2+2bx+c,
由題意知x1,x2是方程3x2+2ax+b=0的兩根,即x1,x2是函數(shù)的兩個(gè)極值點(diǎn),
不妨設(shè)x2>x1,從而關(guān)于f(x)的方程3a[f(x)]2+2b[f(x)]+c=0有兩個(gè)根,
所以f(x)=x1,或f(x)=x2根據(jù)題意畫圖,
所以f(x)=x1有兩個(gè)不等實(shí)根,f(x)=x2只有一個(gè)不等實(shí)根,
綜上方程3a[f(x)]2+2bf(x)+c=0的不同實(shí)根個(gè)數(shù)為3個(gè).
點(diǎn)評(píng):考查函數(shù)零點(diǎn)的概念、以及對(duì)嵌套型函數(shù)的理解,考查數(shù)形結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:cos2(-α)=cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x)在[0,+∞)上單調(diào)遞增,若f(a-3)+f(3a-5)>0,求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在梯形ABCD中,AB∥CD,過(guò)D作與BC平行的直線交AB于點(diǎn)E,∠ACE=∠ABC,求證:AB•CE=AC•DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)中,A1,A2是左、右頂點(diǎn),F(xiàn)是右焦點(diǎn),B是虛軸的上端點(diǎn).若在線段BF上(不含端點(diǎn))存在不同的兩點(diǎn)Pi(i=1,2),使得△PiA1A2(i=1,2)構(gòu)成以A1A2為斜邊的直角三角形,則雙曲線離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的偶函數(shù)f(x)滿足:對(duì)任意的x∈R,都有f(x+2)=f(x),且當(dāng)x∈[0,1〕,時(shí)f(x)=
x
,則函數(shù)g(x)=3f(x)-x,在R上的零點(diǎn)個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
a
x
(x≠0,a∈R)
(1)當(dāng)a=4時(shí),證明:函數(shù)f(x)在區(qū)間[2,+∞)上單調(diào)遞增;
(2)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(-1)nsin
πx
2
+2n,x∈[2n,2n+1)
(-1)n+1sin
πx
2
+2n+2,x∈[2n+1,2n+2)
(n∈N)
,若數(shù)列{an}滿足am=f(m)(m∈N*),數(shù)列{am}的前m項(xiàng)和為Sm,則S104-S96=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)的和為
1
12
,且S5=45,S6=60.
(1)求的通項(xiàng)公式;
(2)若數(shù)列
2
55
5
滿足bn+1-bn=an(n∉N*),且b1=3設(shè)數(shù)列{
1
bn
}的前n項(xiàng)和為Tn,求證:Tn
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案