A. | (-∞,-1) | B. | (-∞,-4) | C. | (-1,-4] | D. | (-∞,-4] |
分析 根據(jù)分段函數(shù)單調(diào)性的性質(zhì)進行求解即可.
解答 解:若函數(shù)f(x)在R上為減函數(shù),
則$\left\{\begin{array}{l}{a-1<0}\\{a+1<0}\\{a-1-\frac{1}{2}a≥a+1}\end{array}\right.$,
即$\left\{\begin{array}{l}{a<1}\\{a<-1}\\{a≤-4}\end{array}\right.$,解得a≤-4,
即實數(shù)a的取值范圍是(-∞,-4],
故選:D.
點評 本題主要考查函數(shù)單調(diào)性的應(yīng)用,根據(jù)分段函數(shù)單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-$\frac{1}{3}$] | B. | (-$\frac{1}{2}$,-$\frac{1}{4}$] | C. | (-$\frac{1}{2}$,0) | D. | (-∞,-$\frac{1}{4}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,8] | B. | (-∞,8) | C. | (8,+∞) | D. | [8,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
數(shù)N | 1.010 | 1.015 | 1.017 | 1.310 | 2.000 |
對數(shù)lgN | 0.004 3 | 0.006 5 | 0.007 3 | 0.117 3 | 0.301 0 |
數(shù)N | 3.000 | 5.000 | 12.48 | 13.11 | 13.78 |
對數(shù)lgN | 0.477 1 | 0.699 0 | 1.096 2 | 1.117 6 | 1.139 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com