5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x+4,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,則不等式f(x)≤2的解集為{x|x≤-2 或0<x≤1 }.

分析 由不等式f(x)≤2,可得$\left\{\begin{array}{l}{x≤0}\\{x+4≤2}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{x>0}\\{{2}^{x}≤2}\end{array}\right.$ ②,分別求得①、②的解集,再取并集,即得所求.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{x+4,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,則由不等式f(x)≤2,可得$\left\{\begin{array}{l}{x≤0}\\{x+4≤2}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{x>0}\\{{2}^{x}≤2}\end{array}\right.$ ②.
解①求得x≤-2,解②求得0<x≤1,
綜上可得,不等式的解集為{x|x≤-2 或0<x≤1 },
故答案為:{x|x≤-2 或0<x≤1 }.

點(diǎn)評(píng) 本題主要考查分段函數(shù)的應(yīng)用,指數(shù)不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)計(jì)一個(gè)計(jì)算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線 ①上不能填入的數(shù)是( 。
A.13B.13.5C.14D.14.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對(duì)于實(shí)數(shù)x、y,定義新運(yùn)算x*y=ax+by+2010,其中a、b是常數(shù),等式右邊是通常的加法和乘法運(yùn)算,若3*5=2011,4*9=2009,則1*2=2010.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$(x∈R).
(I)求函數(shù)f(x)的單調(diào)增區(qū)間.
(II)設(shè)△ABC的內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z滿足(3-z)i=1-3i,則z=( 。
A.-3-iB.-3+iC.-6-iD.6+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.有5個(gè)男生和3個(gè)女生,從中選出5人擔(dān)任5門不同學(xué)科的課代表,分別求符合下列條件的選法數(shù):(結(jié)果用數(shù)字)
(1)有女生但人數(shù)必須少于男生;
(2)某女生一定要擔(dān)任語(yǔ)文課代表;
(3)某男生必須包括在內(nèi),但不擔(dān)任數(shù)學(xué)課代表;
(4)選取3名男生和2名女生分別擔(dān)任5門不同學(xué)科的課代表,但數(shù)學(xué)課代表必須由男生擔(dān)任,語(yǔ)文課代表必須由女生擔(dān)任.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,則( 。
A.若S9>S8,S9>S10,則S17>0,S18<0B.若S17>0,S18<0,則S9>S8,S8>S10
C.若S17>0,S18<0,則a17>0,a18<0D.若a17>0,a18<0,則S17>0,S18<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說明正確的是( 。
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.{an}為等比數(shù)列,則“a1<a2<a3”是“a4<a5”的既不充分也不必要條件
C.?x0∈(-∞,0),使${3^{x_0}}<{4^{x_0}}$成立
D.“$tanα≠\sqrt{3}$”必要不充分條件是“$a≠\frac{π}{3}$”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={0,1,2},B={0,1},則A∩B=(  )
A.{0,1,2}B.{1,2}C.{0,1}D.{0}

查看答案和解析>>

同步練習(xí)冊(cè)答案