10.已知全集U=R,集合A={x|x≤3},B={x|x<2},則(∁UB)∩A=( 。
A.{x|x≤2}B.{x|1≤x≤3}C.{x|2<x≤3}D.{x|2≤x≤3}

分析 直接利用集合的基本運(yùn)算求解即可.

解答 解:全集U=R,集合A={x|x≤3},B={x|x<2},則(∁UB)∩A={x|x≤3}∩{x|x≥2}={x|2≤x≤3},
故選:D.

點(diǎn)評(píng) 本題考查集合的基本運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某新建公司規(guī)定,招聘的職工須參加不小于80小時(shí)的某種技能培訓(xùn)才能上班.公司人事部門在招聘的職工中隨機(jī)抽取200名參加這種技能培訓(xùn)的數(shù)據(jù),按時(shí)間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200名職工中,參加這種技能培訓(xùn)服務(wù)時(shí)間不少于90小時(shí)的人數(shù),并估計(jì)從招聘職工中任意選取一人,其參加這種技能培訓(xùn)時(shí)間不少于90小時(shí)的概率;
(Ⅱ)從招聘職工(人數(shù)很多)中任意選取3人,記X為這3名職工中參加這種技能培訓(xùn)時(shí)間不少于90小時(shí)的人數(shù).試求X的分布列和數(shù)學(xué)期望E(X)和方差D(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-4y+3≤0}\\{x+y-4≤0}\\{x≥1}\\{\;}\end{array}\right.$,則$\frac{xy}{{x}^{2}+{y}^{2}}$的最大值為(  )
A.$\frac{1}{2}$B.$\frac{91}{218}$C.$\frac{3}{10}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知非零數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=$\frac{{a}_{n}}{2{a}_{n}+3}$(n∈N*),且{$\frac{1}{{a}_{n}}$+1}成等比數(shù)列,若令bn=$\frac{1}{\frac{1}{{a}_{n}}+1+(-2)^{n}}$,設(shè){bn}的前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)任意m∈N*,有b2m+b2m+1<$\frac{4}{{3}^{2m+1}}$;
(3)判斷Sn與$\frac{7}{6}$的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知平面向量$\overrightarrowa$,$\overrightarrow b$滿足$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$\overrightarrow a•\overrightarrow b=1$.則對(duì)于任意的實(shí)數(shù)m,$|{m\overrightarrow a+(2-4m)\overrightarrow b}|$的最小值為( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知3件次品和2件正品放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,則第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率為( 。
A.$\frac{1}{6}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.現(xiàn)有一枚質(zhì)地均勻且表面分別標(biāo)有1、2、3、4、5、6的正方體骰子,將這枚骰子先后拋擲兩次,這兩次出現(xiàn)的點(diǎn)數(shù)之和大于點(diǎn)數(shù)之積的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{11}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在斜三角形ABC中,tanA+tanB+tanAtanB=1.
(1)求C的值;
(2)若A=15°,$AB=\sqrt{2}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題“存在x0∈R,x${\;}_{0}^{2}$-1=0”的否定是( 。
A.不存在x0∈R,x${\;}_{0}^{2}$-1=0B.存在x0∈R,x${\;}_{0}^{2}$-1≠0
C.存在x0∈R,x${\;}_{0}^{2}$-1=0D.對(duì)任意的x0∈R,x${\;}_{0}^{2}$-1≠0

查看答案和解析>>

同步練習(xí)冊(cè)答案