3.已知雙曲線方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,以O(shè)為圓心,實(shí)半軸長(zhǎng)為半徑作圓O,過雙曲線的焦點(diǎn)F作圓O的兩條切線,切點(diǎn)為A,B,若四邊形FAOB為正方形,則雙曲線的離心率為(  )
A.$\frac{3}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 求得圓O的方程,由正方形的性質(zhì)可得對(duì)角線OF的長(zhǎng)為$\sqrt{2}$a,再由離心率公式計(jì)算即可得到所求值.

解答 解:由題意可得圓O的方程為x2+y2=a2,
由四邊形FAOB為邊長(zhǎng)為a的正方形,
可得對(duì)角線OF的長(zhǎng)為$\sqrt{2}$a,
即有c=$\sqrt{2}$a,
則離心率e=$\frac{c}{a}$=$\sqrt{2}$.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用直線和圓相切的性質(zhì)和正方形的性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,四棱錐P-ABCD的底面ABCD是菱形,側(cè)棱PD⊥底面ABCD,∠BCD=60°.
(1)若點(diǎn)F,E分別在線段AP,BC上,AF=2FP,BE=2EC,求證:EF∥平面PDC;
(Ⅱ)問在線段AB上,是否存在點(diǎn)Q,使得平面PAB⊥平面PDQ,若存在,求出點(diǎn)Q的位置;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}中,a1=1,其前n項(xiàng)和為Sn,且滿足an=$\frac{{2S}_{n}^{2}}{2{S}_{n}-1}$(n≥2),則數(shù)列{an}的前n項(xiàng)和為Sn=$\frac{1}{2n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)雙曲線$\frac{x^2}{4}-\frac{y^2}{2}=1$的左,右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線l交雙曲線左支于A,B兩點(diǎn),則|BF2|+|AF2|的最小值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知定點(diǎn)P(3,1),雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1的左、右焦點(diǎn)分別為F1、F2,若點(diǎn)A在雙曲線上,則|AP|+|AF2|的最小值為$\sqrt{37}$-2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}=1({a_1}>{b_1}>0)$與雙曲線C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}=1({a_2}>0,{b_2}>0)$有相同的焦點(diǎn)F1,F(xiàn)2,點(diǎn)P是兩曲線的一個(gè)公共點(diǎn),且PF1⊥PF2,e1,e2分別是兩曲線C1,C2的離心率,當(dāng)4e12+e22取得最小值時(shí),C1的離心率e1等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)=|ln(x+1)|,已知f(a)=f(b)(a<b),則( 。
A.a+b>0B.a+b>1C.2a+b>0D.2a+b>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC⊥AB,E,F(xiàn),H分別是AC,AB′,BC的中點(diǎn).
(1)證明:EF⊥AH
(2)求四面體E-FAH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓錐曲線$C:\left\{{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}}\right.(α為參數(shù))$和定點(diǎn)$A({0,\sqrt{3}})$,F(xiàn)1,F(xiàn)2是此圓錐曲線的左、右焦點(diǎn),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線AF2的極坐標(biāo)方程;
(Ⅱ)經(jīng)過點(diǎn)F1且與直線AF2垂直的直線l交此圓錐曲線于M,N兩點(diǎn),求||MF1|-|NF1||的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案