12.已知數(shù)列{an}的前n項和Sn=(-1)n-1•n,若對任意的正整數(shù)n,有(an+1-p)(an-p)<0恒成立,則實數(shù)p的取值范圍是(-3,1).

分析 Sn=(-1)n-1•n,可得:a1=S1=1.當n≥2時,an=Sn-Sn-1,可得an=(-1)n-1(2n-1),對n分類討論,利用(an+1-p)(an-p)<0恒成立,即可解出.

解答 解:∵Sn=(-1)n-1•n,
∴a1=S1=1.
當n≥2時,an=Sn-Sn-1=(-1)n-1•n-(-1)n-2(n-1)=(-1)n-1(2n-1),當n=1時也成立,
∴an=(-1)n-1(2n-1),
當n為偶數(shù)時,(an+1-p)(an-p)<0化為:[(2n+1)-p][-(2n-1)-p]<0,-(2n-1)<p<2n+1,可得-3<p<5.
當n為奇數(shù)時,(an+1-p)(an-p)<0化為:[-(2n+1)-p][(2n-1)-p]<0,-(2n+1)<p<2n-1,可得-3<p<1.
∴$\left\{\begin{array}{l}{-3<p<5}\\{-3<p<1}\end{array}\right.$,
解得-3<p<1.
故答案為:(-3,1).

點評 本題考查了遞推公式、不等式的解法、分類討論方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在數(shù)列{an}中,已知${S_n}={2^n}-1$,則a12+a22+…+an2等于( 。
A.$\frac{{4}^{n}-1}{3}$B.$\frac{({2}^{n}-1)^{2}}{3}$C.4n-1D.(2n-1)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合M={y|y=2sinx,x∈R},N={x|y=lgx},則M∩N為( 。
A.[-2,2]B.(0,+∞)C.(0,2]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,若$\frac{sinA}{a}=\frac{\sqrt{3}cosC}{c}$,則∠C=60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知等差數(shù)列{an}的前n項和為Sn,a1=-7,S8=0.
(Ⅰ)求{an}的通項公式;
(Ⅱ)數(shù)列{bn}滿足b1=$\frac{1}{16}$,bnbn+1=2an,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知定義在R上的偶函數(shù)f(x),滿足f(x+4)=f(x),f(x)=sinπx+2|sinπx|,x∈[0,2],函數(shù)g(x)=f(x)-loga(x+$\frac{3}{2}$),若以g(x)=0在區(qū)間[-1,3]上至少6個根,則a的取值范圍為( 。
A.[${4}^{\frac{1}{3}}$,+∞)B.[${4}^{\frac{1}{3}}$,6]C.[4,+∞)D.[3,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別是棱BB1、CC1的中點,AC與BD交于點O.
(1)求證:OE⊥平面ACD1
(2)求異面直線OE與BF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知命題p;$\frac{1}{2}$≤x≤1,命題q:(x-a)(x-a-1)≤0,若¬p是¬q的必要不充分條件,則實數(shù)a的取值范圍是(  )
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[$\frac{1}{3}$,$\frac{1}{2}$]D.$(\frac{1}{3},\frac{1}{2}]$

查看答案和解析>>

同步練習冊答案