18.某單位為了了解辦公樓用電量y(度)與氣溫x(℃)之間的關系,隨機統(tǒng)計了四個工作日的用電量與當天平均氣溫,并制作了對照表:
氣溫16118-3
用電量25333864
由表中數(shù)據(jù)得到線性回歸方程$\stackrel{∧}{y}$=-2x+a,當氣溫為-5℃時,預測用電量約為66°.

分析 先計算樣本中心點,再求出線性回歸方程,進而利用方程進行預測.

解答 解:由題意,$\overline{x}$=$\frac{16+11+8-3}{4}$=8,$\overline{y}$=$\frac{25+33+38+64}{4}$=40,
將(8,40)代入線性回歸方程$\stackrel{∧}{y}$=-2x+a,可得a=56,
∴x=-5時,y=-2×(-5)+56=66.
故答案為:66°.

點評 本題考查線性回歸方程,考查利用線性回歸方程進行預測,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(3)若存在實數(shù)a∈(1,2]使得關于x的方程f(x)-tf(2a)=0有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知$\frac{{{{cos}^2}(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)•sin(π+α)}}$=$\frac{1}{2}$.
(Ⅰ)求tanα的值;
(Ⅱ)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知a∈($\frac{π}{2}$,π),sina=$\frac{\sqrt{5}}{5}$.
(Ⅰ)求tan($\frac{π}{4}$+2a)的值;
(Ⅱ)求cos($\frac{5π}{6}$-2a)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.正方形的四個頂點A(-1,-1),B(1,-1),C(1,1),D(-1,1).拋物線y2=2px過C點.若將質(zhì)點P(x,y)投入到正方形ABCD中,則y2<2px的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設等差數(shù)列{an}的前n項和為Sn,已知a2=2,S5=15,若bn=$\frac{1}{{a}_{n+1}^{2}-1}$,則數(shù)列{bn}的前10項和為( 。
A.$\frac{11}{24}$B.$\frac{175}{132}$C.$\frac{175}{264}$D.$\frac{17}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.命題“?x∈R,總有x2+1>0”的否定是( 。
A.“?x∉R,總有x2+1>0”B.“?x∈R,總有x2+1≤0”
C.“?x∈R,使得x2+1≤0”D.“?x∈R,使得x2+1>0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$\overrightarrow{a}$與$\overrightarrow$為單位向量,且滿足(4$\overrightarrow{a}$-3$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=6,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年內(nèi)蒙古高二文上月考一數(shù)學試卷(解析版) 題型:解答題

拋物線頂點在原點,焦點在x軸上,且過點(4,4),焦點為F.

(1)求拋物線的焦點坐標和標準方程;

(2)P是拋物線上一動點,M是PF的中點,求M的軌跡方程.

查看答案和解析>>

同步練習冊答案