【題目】設(shè),若存在常數(shù),使得對任意,均有,則稱為有界集合,同時稱為集合的上界.

(1)設(shè)、,試判斷是否為有界集合,并說明理由;

(2)已知,記).若

,且為有界集合,求的值及的取值范圍;

(3)設(shè)均為正數(shù),將中的最小數(shù)記為.是否存在正數(shù),使得為有界集合, 均為正數(shù)的上界,若存在,試求的最小值;若不存在,請說明理由.

【答案】(1)為有界集合; 不是有界集合.(2)滿足題設(shè)的實數(shù)的值為,且實數(shù)的取值范圍是.(3)

【解析】試題分析:(1)根據(jù)有界定義,可知有界, 無界(2)當(dāng) 有界,當(dāng)用數(shù)學(xué)歸納法可得,故為有界集合,當(dāng), ,

由累加法得,故不是有界集合3不妨設(shè),可證得;若 ,所以有上界,

試題解析:(1)對于,由,解得 為有界集合;

顯然不是有界集合.

(2)記,則

,則, ,即,且,從而

(。┊(dāng)時, ,所以,從而為有界集合.

(ⅱ)當(dāng)時,由, ,顯然,此時,利用數(shù)學(xué)歸納法可得,故為有界集合.

(ⅲ)當(dāng)時, ,即

由累加法得,故不是有界集合.

因此,當(dāng),且時, 為有界集合;當(dāng),且時, 不是有界集合;

,則,即,又),即).于是,對任意,均有,即),再由累加法得,故不是有界集合.

綜上,當(dāng),且時, 為有界集合;當(dāng),且時, 不是有界集合;

當(dāng) ()時, 不是有界集合.

故,滿足題設(shè)的實數(shù)的值為,且實數(shù)的取值范圍是

(3)存在.不妨設(shè).若,則,且.故 ,

;

,則,即,又,故,又 ,

,因此, 是有界集合的一個上界.

  下證:上界不可能出現(xiàn).

假設(shè)正數(shù)出現(xiàn),取, ,則,

此時,

*

由式(*)可得,與的一個上界矛盾!.

綜上所述,滿足題設(shè)的最小正數(shù)的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(只填正確說法序號)
①若集合A={y|y=x﹣1},B={y|y=x2﹣1},則A∩B={(0,﹣1),(1,0)};
是函數(shù)解析式;
是非奇非偶函數(shù);
④設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),則f(x1+x2)=c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:f(x)= 在區(qū)間(1,+∞)上是減函數(shù);命題q;x1x2是方程x2﹣ax﹣2=0的兩個實根,不等式m2+5m﹣3≥|x1﹣x2|對任意實數(shù)α∈[﹣1,1]恒成立;若¬p∧q為真,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx和反比例函數(shù) 在同一坐標(biāo)系中的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域為I的函數(shù)y=f(x),如果存在區(qū)間[m,n]I,同時滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n],f(x)值域也是[m,n],則稱[m,n]是函數(shù)y=f(x)的“好區(qū)間”.
(1)設(shè)g(x)=loga(ax﹣2a)+loga(ax﹣3a)(其中a>0且a≠1),求g(x)的定義域并判斷其單調(diào)性;
(2)試判斷(1)中的g(x)是否存在“好區(qū)間”,并說明理由;
(3)已知函數(shù)P(x)= (t∈R,t≠0)有“好區(qū)間”[m,n],當(dāng)t變化時,求n﹣m 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線C的中心在原點(diǎn),右焦點(diǎn)為 ,漸近線方程為
(1)求雙曲線C的方程;
(2)設(shè)直線l:y=kx+1與雙曲線C交于A、B兩點(diǎn),問:當(dāng)k為何值時,以AB為直徑的圓過原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小張在淘寶網(wǎng)上開一家商店,他以10元每條的價格購進(jìn)某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價x(元)(x∈Z+)的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關(guān)于售價x(元)(x∈Z+)的函數(shù)關(guān)系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進(jìn)貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費(fèi)用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費(fèi)用與圍巾數(shù)量無關(guān)),試問小張應(yīng)該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤﹣總管理、倉儲等費(fèi)用)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有n2,n∈N*)給定的不同的數(shù)隨機(jī)排成一個下圖所示的三角形數(shù)陣:

設(shè)Mk是第k行中的最大數(shù),其中1≤kn,k∈N*.記M1M2Mn的概率為pn

(1)求p2的值;

(2)證明:pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:設(shè)上的可導(dǎo)函數(shù),若為增函數(shù),則稱上的凸函數(shù).

(1)判斷函數(shù)是否為凸函數(shù);

(2)設(shè)上的凸函數(shù),求證:若, ,則恒有成立;

(3)設(shè), , ,求證: .

查看答案和解析>>

同步練習(xí)冊答案