【題目】二次函數(shù)y=ax2+bx和反比例函數(shù) 在同一坐標(biāo)系中的圖象大致是(
A.
B.
C.
D.

【答案】B
【解析】解:當(dāng)a>0時(shí),b>0時(shí),二次函數(shù)二次函數(shù)y=ax2+bx圖象開(kāi)口向上,且對(duì)稱(chēng)軸x=﹣ <0,反比例函數(shù) 在第一,三象限且為減函數(shù),故A不正確,
當(dāng)a>0時(shí),b<0時(shí),二次函數(shù)二次函數(shù)y=ax2+bx圖象開(kāi)口向上,且對(duì)稱(chēng)軸x=﹣ >0,反比例函數(shù) 在第二,四象限且為增函數(shù),故D不正確,
當(dāng)a<0時(shí),b>0時(shí),二次函數(shù)二次函數(shù)y=ax2+bx圖象開(kāi)口向下,且對(duì)稱(chēng)軸x=﹣ >0,反比例函數(shù) 在第一,三象限且為減函數(shù),故B正確,
當(dāng)a<0時(shí),b<0時(shí),二次函數(shù)二次函數(shù)y=ax2+bx圖象開(kāi)口向上,且對(duì)稱(chēng)軸x=﹣ <0,反比例函數(shù) 在第二,四象限且為增函數(shù),故C不正確,
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定映射f:(x,y)→(x+2y,2x﹣y),在映射f下(3,1)的原象為(
A.(1,3)
B.(3,1)
C.(1,1)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高一 、高二 、高三三個(gè)年級(jí)共有 名教師,為調(diào)查他們的備課時(shí)間情況,通過(guò)分層

抽樣獲得了名教師一周的備課時(shí)間 ,數(shù)據(jù)如下表(單位 :小時(shí)):

高一年級(jí)

高二年級(jí)

高三年級(jí)

(1)試估計(jì)該校高三年級(jí)的教師人數(shù) ;

(2)從高一年級(jí)和高二年級(jí)抽出的教師中,各隨機(jī)選取一人,高一年級(jí)選出的人記為甲 ,高二年級(jí)選出的人記為乙 ,求該周甲的備課時(shí)間不比乙的備課時(shí)間長(zhǎng)的概率 ;

(3)再?gòu)母咭、高二、高三三個(gè)年級(jí)中各隨機(jī)抽取一名教師,他們?cè)撝艿膫湔n時(shí)間分別是(單位: 小時(shí)),這三個(gè)數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中的數(shù)據(jù)平均數(shù)記為 ,試判斷的大小. (結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】私家車(chē)的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開(kāi)私家車(chē),盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實(shí)施了機(jī)動(dòng)車(chē)車(chē)尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)車(chē)輛限行的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

)完成被調(diào)查人員的頻率分布直方圖;

)若從年齡在[1525),[25,35)的被調(diào)查者中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰有2人不贊成的概率;

)在()的條件下,再記選中的4人中不贊成車(chē)輛限行的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的上下頂點(diǎn)分別為,且點(diǎn) 分別為橢圓的左、右焦點(diǎn),且

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)點(diǎn)是橢圓上異于, 的任意一點(diǎn),過(guò)點(diǎn)軸于, 為線(xiàn)段

的中點(diǎn).直線(xiàn)與直線(xiàn)交于點(diǎn), 為線(xiàn)段的中點(diǎn), 為坐標(biāo)原點(diǎn).求

的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名射手在一次射擊中的得分是兩個(gè)隨機(jī)變量,分別記為X和Y,它們的分布列分別為

X

0

1

2

P

0.1

a

0.4

Y

0

1

2

P

0.2

0.2

b


(1)求a,b的值;
(2)計(jì)算X和Y的期望與方差,并以此分析甲、乙兩射手的技術(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),若存在常數(shù),使得對(duì)任意,均有,則稱(chēng)為有界集合,同時(shí)稱(chēng)為集合的上界.

(1)設(shè)、,試判斷、是否為有界集合,并說(shuō)明理由;

(2)已知,記).若,

,且為有界集合,求的值及的取值范圍;

(3)設(shè)均為正數(shù),將中的最小數(shù)記為.是否存在正數(shù),使得為有界集合, 均為正數(shù)的上界,若存在,試求的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱(chēng)x0為函數(shù)y=f(x)的局部對(duì)稱(chēng)點(diǎn).
(1)若a、b∈R且a≠0,證明:函數(shù)f(x)=ax2+bx﹣a必有局部對(duì)稱(chēng)點(diǎn);
(2)若函數(shù)f(x)=2x+c在定義域[﹣1,2]內(nèi)有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)c的取值范圍;
(3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足Sn+an=2n+1.
(1)寫(xiě)出a1 , a2 , a3 , 并推測(cè)an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案