16.已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f($\frac{3}{2}$-x)=f(x),f(-2)=-3,則f(2015)+f(2016)=(  )
A.-3B.-2C.3D.2

分析 由已知得f(-x)=-f(x),f(0)=0,f(2)=3,f(3+x)=f(x),由此能求出f(2010)+f(2012)的值.

解答 解:由函數(shù)f(x)是定義在R上的函數(shù),得f(-x)=-f(x),f(0)=0,
由f(-2)=-3,得f(2)=-f(-2)=3,
由$f({\frac{3}{2}-x})=f(x)$,得f(3+x)=f[$\frac{3}{2}$-(-$\frac{3}{2}-x$)]=f(-$\frac{3}{2}-x$)=-f($\frac{3}{2}+x$)=-f[$\frac{3}{2}-(-x)$]=-f(-x)=f(x),
即f(3+x)=f(x),
∴f(x)是以3為周期的周期函數(shù),
∴f(2010)+f(2012)=f(670×3+0)+f(670×3+2)=f(0)+f(2)=0+3=3.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知cosα=$\frac{1}{3}$,cos(α+β)=-$\frac{1}{3}$,且α,β∈(0,$\frac{π}{2}$),則cosβ=$\frac{7}{9}$,2α+β=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知直線經(jīng)過點(diǎn)A(6,-4),斜率為-$\frac{4}{3}$,求直線的點(diǎn)斜式和一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.從3男1女共4名學(xué)生中選出2人參加學(xué)校組織的環(huán);顒(dòng),則女生被選中的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知兩條平行線之間的距離為6cm,和這兩條平行線都相切的動(dòng)圓圓心的軌跡是( 。
A.和這兩條直線平行,且距離等于6cm的一條直線
B.和這兩條直線平行,且距離等于3cm的兩條直線
C.和這兩條直線平行,且距離等于3cm的一條直線
D.和這兩條直線平行,且距離等于3cm的三條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,當(dāng)∠xOy=α,且α∈(0,$\frac{π}{2}$)∪($\frac{π}{2}$,π)時(shí),定義平面坐標(biāo)系xOy為α-仿射坐標(biāo)系.在α-仿射坐標(biāo)系中,任意一點(diǎn)P的斜坐標(biāo)這樣定義:$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分別為與x軸、y軸正向相同的單位向量,若$\overrightarrow{OP}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,則記為$\overrightarrow{OP}$=(x,y).現(xiàn)給出以下說法:
①在α-仿射坐標(biāo)系中,已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(3,t),若$\overrightarrow{a}$∥$\overrightarrow$,則t=6;
②在α-仿射坐標(biāo)系中,若$\overrightarrow{OP}$=($\frac{1}{2}$,$\frac{1}{3}$),若$\overrightarrow{OQ}$=($\frac{1}{3}$,-$\frac{1}{2}$),則$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0;
③在60°-仿射坐標(biāo)系中,若P(2,-1),則|$\overrightarrow{OP}$|=$\sqrt{3}$;
其中說法正確的有①③.(填出所有說法正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.sin(-15°)=( 。
A.$\frac{\sqrt{2}+\sqrt{6}}{2}$B.$\frac{\sqrt{2}-\sqrt{6}}{2}$C.$\frac{\sqrt{2}+\sqrt{6}}{4}$D.$\frac{\sqrt{2}-\sqrt{6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,點(diǎn)M,N分別在PB,PC上,且MN∥BC.
(Ⅰ)證明:平面AMN⊥平面PBA;
(Ⅱ)若M為PB的中點(diǎn),求二面角M-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.為了得到函數(shù)y=cos($\frac{1}{2}$x+$\frac{π}{3}$)的圖象,只要把y=cos$\frac{1}{2}x$的圖象上所有的點(diǎn)( 。
A.向左平移$\frac{π}{3}$個(gè)單位長度B.向右平移$\frac{π}{3}$個(gè)單位長度
C.向左平移$\frac{2π}{3}$個(gè)單位長度D.向右平移$\frac{2π}{3}$個(gè)單位長度

查看答案和解析>>

同步練習(xí)冊(cè)答案