已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為F1、F2,這兩條曲線在第一象限的交點(diǎn)為P,△PF1F2 是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2,則e1•e2 的取值范圍為
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì),雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),由條件可得m=10,n=2c,再由橢圓和雙曲線的定義可得a1=5+c,a2=5-c,(c<5),運(yùn)用三角形的三邊關(guān)系求得c的范圍,再由離心率公式,計(jì)算即可得到所求范圍.
解答: 解:設(shè)橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),
由于△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由橢圓的定義可得m+n=2a1
由雙曲線的定義可得m-n=2a2,
即有a1=5+c,a2=5-c,(c<5),
再由三角形的兩邊之和大于第三邊,可得2c+2c>10,
可得c>
5
2
,即有
5
2
<c<5.
由離心率公式可得e1•e2=
c
a1
c
a2
=
c2
25-c2
=
1
25
c2
-1

由于1<
25
c2
<4,則有
1
25
c2
-1
1
3

則e1•e2 的取值范圍為(
1
3
,+∞).
故答案為:(
1
3
,+∞).
點(diǎn)評(píng):本題考查橢圓和雙曲線的定義和性質(zhì),考查離心率的求法,考查三角形的三邊關(guān)系,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線2x2=1-y2的離心率為e1,曲線8y2=x2-32,的離心率為e2,記m=e2•e1,則( 。
A、m=1
B、m=
3
2
C、m=
1
2
D、m=
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在區(qū)間(1,+∞)上為增函數(shù)的是( 。
A、y=2x-1
B、y=
1
x-1
C、y=-(x-1)2
D、y=log  
1
2
(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知cos(
π
6
+α)=
3
2
,求cos(
6
-α)的值;
(2)已知π<α<2π,cos(α-7π)=-
3
5
,求sin(3π+α)•tan(α-
7
2
π
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a=1”是“直線ax+y=1與直線x+ay=2平行”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足
(6+z)-(8+z)i
z
=4+3i(其中i為虛數(shù)單位),則|z|=( 。
A、2B、1C、5D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角終邊上一點(diǎn)P(b,-
3
)
(b≠0),cosβ=
b
2
,求sinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2x+1+alnx有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,則(  )
A、f(x2)<-
1+2ln2
4
B、f(x2)<
1-2ln2
4
C、f(x2)>
1+2ln2
4
D、f(x2)>
1-2ln2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意的α∈R,sin2α=( 。
A、2sinα
B、2sinαcosα
C、2cosα
D、cos2α-sin2α

查看答案和解析>>

同步練習(xí)冊(cè)答案