分析 (1)求出所求直線(xiàn)的斜率,帶入直線(xiàn)方程整理即可;
(2)分別討論當(dāng)橫截距a=0時(shí),縱截距b=0,此時(shí)直線(xiàn)過(guò)點(diǎn)(0,0),P(2,3);當(dāng)橫截距a≠0時(shí),縱截距b=a,設(shè)出直線(xiàn)方程,解得a的值.由此能求出過(guò)點(diǎn)P(2,3)且在兩坐標(biāo)軸上的截距相等的直線(xiàn)方程
解答 解:(1)l:3x+4y-20=0的斜率是:-$\frac{3}{4}$,
故所求直線(xiàn)的斜率是:$\frac{4}{3}$,
故所求直線(xiàn)的方程是:y-2=$\frac{4}{3}$(x-2),
整理得:4x-3y-2=0;
(2)當(dāng)橫截距a=0時(shí),縱截距b=0,
此時(shí)直線(xiàn)過(guò)點(diǎn)(0,0),P(2,3),
∴直線(xiàn)方程為 $\frac{y}{x}$=$\frac{3}{2}$,整理得3x-2y=0;
當(dāng)橫截距a≠0時(shí),縱截距b=a,
此時(shí)直線(xiàn)方程設(shè)為$\frac{x}{a}$+$\frac{y}{a}$=1,
把P(2,3)代入,得$\frac{2}{a}$+$\frac{3}{a}$=1,解得a=5,
∴所求的直線(xiàn)方程為:x+y-5=0.
綜上:過(guò)點(diǎn)P(2,3)且在兩坐標(biāo)軸上的截距相等的直線(xiàn)方程為3x-2y=0或x+y-5=0.
點(diǎn)評(píng) 本題考查直線(xiàn)方程的求法,是基礎(chǔ)題,解題時(shí)要注意截距式方程的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{204}$ | B. | $\frac{45}{68}$ | C. | $\frac{15}{68}$ | D. | $\frac{5}{68}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{7}{8}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {3,4} | B. | {-2,3} | C. | {-2,4} | D. | {-2,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | b<c<a | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com