12.設(shè)f′(a)=4,則$\lim_{h→0}\frac{f(a+2h)-f(a-h)}{h}$=( 。
A.4B.8C.12D.-4

分析 利用導(dǎo)數(shù)的定義,將$\lim_{h→0}\frac{f(a+2h)-f(a-h)}{h}$轉(zhuǎn)化成,2$\underset{lim}{n→0}$$\frac{f(a+2h)-f(a)}{2h}$+$\underset{lim}{n→0}$$\frac{-f(a)+f(a-h)}{-h}$,即可求得結(jié)果.

解答 解:$\lim_{h→0}\frac{f(a+2h)-f(a-h)}{h}$=2$\underset{lim}{n→0}$$\frac{f(a+2h)-f(a)}{2h}$+$\underset{lim}{n→0}$$\frac{-f(a)+f(a-h)}{-h}$,
=2f′(a)+f′(a),
=12,
故答案選:C.

點評 本題考查函數(shù)的極限的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)隨機(jī)變量的分布列為如表所示,則Eξ=( 。
ξ0123
p0.10.30.50.1
A.1B.1.8C.1.2D.1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P為棱A1B1的中點,點Q在側(cè)面DCC1D1內(nèi)運(yùn)動,給出下列結(jié)論:
①若BQ⊥A1C,則動點Q的軌跡是線段;
②若|BQ|=$\sqrt{2}$,則動點Q的軌跡是圓的一部分;
③若∠QBD1=∠PBD1,則動點Q的軌跡是橢圓的一部分;
④若點Q到AB與DD1的距離相等,則動點Q的軌跡是拋物線的一部分.
其中結(jié)論正確的是①②(寫出所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知某幾何體的三視圖如圖所示,則它的表面積為( 。
A.15πB.16πC.17πD.18π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A、B、C的對邊分別為a,b,c,已知向量$\overrightarrow{m}$=(sinA,sinB+sinC),向量$\overrightarrow{n}$=(b-c,a-c),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角B;
(2)求sinA•cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在△ABC中,∠B=90°,AB為直徑的⊙O交AC于D,過點D作⊙O的切線交BC于E,AE交⊙O于點F.
(1)證明:EB=EC;
(2)證明:AD•AC=AE•AF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到如圖的散點圖及一些統(tǒng)計量的值.

$\overline x$$\overline y$$\overline w$$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^8{({x_i}-\overline x)•({{y_i}-\overline y})}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}•({{y_i}-\overline y})$
46.65636.8289.81.61 469108.8
表中wi=$\sqrt{x}$i,$\overline w$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(1)根據(jù)散點圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問題:
①年宣傳費x=49時,年銷售量及年利潤的預(yù)報值是多少?
②年宣傳費x為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({{v_i}-\overline v})}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\widehatα=\overline v-\widehatβ\overline u$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“a=${∫}_{0}^{1}$$\sqrt{1-{x}^{2}}$dx”是“函數(shù)y=cos2ax-sin2ax的最小正周期為4”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若復(fù)數(shù)z=$\frac{1-2i}{1+i}$,其中i為虛數(shù)單位,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.-$\frac{1}{2}$+$\frac{3}{2}$iB.$\frac{1}{2}$-$\frac{3}{2}$iC.-$\frac{1}{2}$-$\frac{3}{2}$iD.$\frac{1}{2}$+$\frac{3}{2}$i

查看答案和解析>>

同步練習(xí)冊答案