5.知函數(shù)f(x)=ex-ax的圖象在區(qū)間(-1,+∞)內(nèi)與x軸沒(méi)有交點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.[-$\frac{1}{e}$,e)B.(-$\frac{1}{e}$,e)C.(-$\frac{1}{e}$,$\frac{1}{e}$)D.(0,e)

分析 化簡(jiǎn)可得函數(shù)y=ex與y=ax的圖象在區(qū)間(-1,+∞)內(nèi)沒(méi)有交點(diǎn),從而利用數(shù)形結(jié)合的方法求解.

解答 解:∵函數(shù)f(x)=ex-ax的圖象在區(qū)間(-1,+∞)內(nèi)與x軸沒(méi)有交點(diǎn),
∴函數(shù)y=ex與y=ax的圖象在區(qū)間(-1,+∞)內(nèi)沒(méi)有交點(diǎn),
作函數(shù)y=ex與y=ax的圖象在區(qū)間(-1,+∞)內(nèi)的圖象如右圖,
當(dāng)直線y=ax過(guò)點(diǎn)B(-1,$\frac{1}{e}$)時(shí),a=-$\frac{1}{e}$;
當(dāng)直線y=ax與y=ex相切時(shí),設(shè)切點(diǎn)為A(x,ex),
故ex=$\frac{{e}^{x}}{x}$,解得,x=1;
故點(diǎn)A(1,e),
故a=e;
故實(shí)數(shù)a的取值范圍是[-$\frac{1}{e}$,e),
故選:A.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,同時(shí)考查了轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.0!+1!+$\frac{{A}_{6}^{3}}{{C}_{6}^{3}}$等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè){an}的相鄰兩項(xiàng)an、an+1是方程x2-cnx+($\frac{1}{3}$)n=0的兩根,且a1=2,求無(wú)窮數(shù)列{cn}的各項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知a=${∫}_{0}^{π}$sinxdx,若從[0,10]中任取一個(gè)數(shù)x,則使|x-1|≤a的概率為$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x>0}\\{-ax+1,x≤0}\end{array}\right.$,若f(a)+f(2)=0,則實(shí)數(shù)a的值等于( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=-x+log2$\frac{1-x}{1+x}$,若方程m-e-x=f(x)在[-$\frac{1}{3}$,$\frac{1}{3}$]內(nèi)有實(shí)數(shù)解,則實(shí)數(shù)m的最小值是( 。
A.e${\;}^{-\frac{1}{3}}$+$\frac{4}{3}$B.e${\;}^{\frac{1}{3}}$+$\frac{4}{3}$C.e${\;}^{\frac{1}{3}}$-$\frac{4}{3}$D.e${\;}^{-\frac{1}{3}}$-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知F為雙曲線$C:\frac{x^2}{9}-\frac{y^2}{16}=1$的左焦點(diǎn),P,Q為C右支上的點(diǎn),若PQ的長(zhǎng)等于虛軸長(zhǎng)的2倍,點(diǎn)A(5,0)在線段PQ上,則△PFQ的周長(zhǎng)為(  )
A.28B.36C.44D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=0,4Sn=1-an+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=(-1)nlog3a2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某公司對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),且銷量與單價(jià)具有相關(guān)關(guān)系,將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x(單位:元)88.28.48.68.89
銷量y(單位:萬(wàn)件)908483807568
(1)現(xiàn)有三條y對(duì)x的回歸直線方程:$\stackrel{∧}{y}$=-10x+170; $\stackrel{∧}{y}$=-20x+250; $\stackrel{∧}{y}$=-15x+210;根據(jù)所學(xué)的統(tǒng)計(jì)學(xué)知識(shí),選擇一條合理的回歸直線,并說(shuō)明理由.
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)服從(1)中選出的回歸直線方程,且該產(chǎn)品的成本是每件5元,為使公司獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定多少元?(利潤(rùn)=銷售收入-成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案