14.對于數(shù)列{an},a1=a$+\frac{1}{a}$(a>0.,且a≠1),an+1=a1-$\frac{1}{{a}_{n}}$.
(1)求a2,a3,a4,并猜想這個數(shù)列的通項公式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

分析 由遞推公式可知,寫出a2、a3、a3,進行歸納推理寫出通項公式,再利用數(shù)學(xué)歸納法證明.

解答 解:${a}_{2}={a}_{1}-\frac{1}{{a}_{1}}=a+\frac{1}{a}-\frac{1}{a+\frac{1}{a}}=\frac{{a}^{4}+{a}^{2}+1}{{a}^{2}+1}×\frac{1}{a}$
${a}_{3}={a}_{2}-\frac{1}{{a}_{2}}=\frac{{a}^{6}+{a}^{4}+{a}^{2}+1}{{a}^{4}+{a}^{2}+1}×\frac{1}{a}$
${a}_{4}={a}_{3}-\frac{1}{{a}_{3}}=\frac{{a}^{8}+{a}^{6}+{a}^{4}+{a}^{2}+1}{{a}^{6}+{a}^{4}+{a}^{2}+1}×\frac{1}{a}$
設(shè)$_{n}={a}^{2n}+{a}^{2n-2}+{a}^{2n-4}+…+1$
猜想
${a}_{n}=\frac{_{n}}{_{n-1}}•\frac{1}{a}$
n≤4成立;
設(shè)n=k成立,${a}_{k}=\frac{_{k}}{_{k-1}}•\frac{1}{a}$
當(dāng)n=k+1時,
=${a}_{1}-\frac{{a}_{1}•_{(k-1)}}{_{k}}$
=$\frac{{a}^{2}+1}{a}-\frac{a•_{k-1}}{_{k}}$
=$\frac{{(a}^{2}+1)•_{k}-{a}^{2}•_{k-1}}{a_{k}}$
=$\frac{_{k+1}-1+_{k}-{(b}_{k}-1)}{a_{k}}$
=$\frac{_{k+1}}{a_{k}}$
∴n=k+1成立
由數(shù)學(xué)歸納法可知原式成立.

點評 本題主要考察對已知遞推公式,分別求解,然后根據(jù)規(guī)律寫出通項公式,然后利用數(shù)學(xué)歸納法進行證明.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足:a1=0,an+1=npn+an(0<|p|<1).
(1)求an;
(2)求證:|an|<$\frac{|p|}{(1-|p|)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)D為△ABC所在平面內(nèi)一點,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,|$\overrightarrow{BC}$|=5,$\overrightarrow{CD}$=$\overrightarrow{BC}$,則$\overrightarrow{AD}$•$\overrightarrow{CD}$=( 。
A.23B.25C.32D.41

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于兩個平面向量$\overrightarrow{a}$,$\overrightarrow$,定義它們的一種運算:$\overrightarrow{a}$?$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|sinθ(其中θ為向量$\overrightarrow{a}$,$\overrightarrow$的夾角),則關(guān)于這種運算的以下結(jié)論中,不恒成立的是( 。
A.$\overrightarrow{a}$?$\overrightarrow$=$\overrightarrow$?$\overrightarrow{a}$
B.若$\overrightarrow{a}$?$\overrightarrow$=0,則$\overrightarrow{a}$$∥\overrightarrow$
C.($\overrightarrow{a}$+$\overrightarrow$)?$\overrightarrow{c}$=$\overrightarrow{a}$?$\overrightarrow{c}$+$\overrightarrow$?$\overrightarrow{c}$
D.若$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),則$\overrightarrow{a}$?$\overrightarrow$=|x1y2-x2y1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某公司新招聘進8名員工,平均分給下屬的甲、乙兩個部門,其中兩名英語翻譯人員不能分給同一個部門,另三名電腦編程人員也不能分給同一個部門,則不同的分配方案種數(shù)是( 。
A.18B.24C.36D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合A={x|$\frac{x-2}{x+1}$<0},B={x|y=$\sqrt{1-{x}^{2}}$},則A∩B=( 。
A.{x|-1<x≤1}B.{x|-1<x<1}C.{x|-1≤x<1}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點A(1,2),點P(x,y)滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≤0}\\{x+3y-3≥0}\end{array}\right.$,O為坐標原點,則Z=$\overrightarrow{OA}$•$\overrightarrow{OP}$的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=asinx+bcosx,其中a,b為非零實常數(shù).
(1)f($\frac{π}{4}$)=$\sqrt{2}$,f(x)的最大值為$\sqrt{10}$,求a,b的值;‘
(2)若a=1,x=$\frac{π}{6}$是f(x)的圖象的一條對稱軸,求x0的值,使其滿足f(x0)=$\sqrt{3}$,且x0∈[0,2π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.當(dāng)x>1時,2log2x+$\frac{1}{lo{g}_{2}x}$的最小值為2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案