【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且a,b,c成等比數(shù)列,求f(B)的范圍.

【答案】
(1)解: =

可得:函數(shù)y=f(x)的最小正周期


(2)解:因?yàn)閍,b,c成等比數(shù)列,可得:b2=ac,

在△ABC中,由余弦定理有: ,

又由0<B<π,得

,

,得 ,

,

,

故f(B)的取值范圍是[﹣2,﹣1]


【解析】(1)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得f(x)=﹣2sin(2x+ ),利用周期公式即可計(jì)算得解.(2)由等比數(shù)列的性質(zhì)可得:b2=ac,由余弦定理可求cosB ,可得范圍 ,進(jìn)而可求范圍 ,利用正弦函數(shù)的性質(zhì)可求 ,即可得解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解余弦定理的定義的相關(guān)知識(shí),掌握余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)向量a=(4cos α , sin α),b=(sin β , 4cos β),若tan αtan β=16,求證:a//b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,數(shù)列{an}的前n項(xiàng)的和記為Sn
(1)求S1 , S2 , S3的值,猜想Sn的表達(dá)式;
(2)請(qǐng)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(1,﹣1),B(2,2),C(3,0),求點(diǎn)D的坐標(biāo),使直線CD⊥AB,且CB∥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線2x+y﹣k=0(k>0)與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn),且有| | | |,那么k的取值范圍是( )
A.[ ,+∞)
B.[ ,2
C.[ ,+∞)
D.[ ,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】游樂(lè)場(chǎng)推出了一項(xiàng)趣味活動(dòng),參加活動(dòng)者需轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動(dòng)后,待轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄指針?biāo)竻^(qū)域中的數(shù),設(shè)兩次記錄的數(shù)分別為x,y,獎(jiǎng)勵(lì)規(guī)則如下:
①若xy≤3,則獎(jiǎng)勵(lì)玩具一個(gè);②若xy≥8,則獎(jiǎng)勵(lì)水杯一個(gè);③其余情況獎(jiǎng)勵(lì)飲料一瓶,假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個(gè)區(qū)域劃分均勻,小亮準(zhǔn)備參加此項(xiàng)活動(dòng).
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請(qǐng)比較小亮獲得水杯與獲得飲料的概率的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,Sn=2n﹣an(n∈N*).
(1)計(jì)算a2 , a3 , a4 , 并由此猜想通項(xiàng)公式an
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax2+(b﹣1)x+3.
(1)若不等式f(x)>0的解為(﹣1, ),求不等式bx2﹣3x+a≤0的解集;
(2)若f(1)=4,a>0,b>0,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,A、B、C是三角形的三內(nèi)角,a、b、c是三內(nèi)角對(duì)應(yīng)的三邊,已知b2 , a2 , c2成等差數(shù)列.
(1)求cosA的最小值;
(2)若a=2,當(dāng)A最大時(shí),△ABC面積的最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案