【題目】將函數(shù)y=3sin(2x+ )的圖象向右平移 個(gè)單位長度,所得圖象對應(yīng)的函數(shù)(
A.在區(qū)間( , )上單調(diào)遞減
B.在區(qū)間( , )上單調(diào)遞增
C.在區(qū)間(﹣ )上單調(diào)遞減
D.在區(qū)間(﹣ , )上單調(diào)遞增

【答案】B
【解析】解:將函數(shù)y=3sin(2x+ )的圖象向右平移 個(gè)單位長度, 所得函數(shù)的解析式:y=3sin[2(x﹣ )+ ]=3sin(2x﹣ ).
令2kπ﹣ <2x﹣ <2kπ+ ,k∈Z,
可得:kπ+ <x<kπ+ ,k∈Z,
可得:當(dāng)k=0時(shí),對應(yīng)的函數(shù)y=3sin(2x﹣ )的單調(diào)遞增區(qū)間為:( , ).
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)f(x)的定義域?yàn)镽,且在(﹣∞,0)上是增函數(shù),則f(﹣ )與f(a2﹣a+1)的大小關(guān)系為(
A.f(﹣ )<f(a2﹣a+1)
B.f(﹣ )>f(a2﹣a+1)??
C.f(﹣ )≤f(a2﹣a+1)
D.f(﹣ )≥f(a2﹣a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1= ,前n項(xiàng)和Sn= an ,
(1)寫出a2 , a3 , a4;
(2)猜出an的表達(dá)式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點(diǎn).
(1)求證:平面CFM⊥平面BDF;
(2)點(diǎn)N在CE上,EC=2,F(xiàn)D=3,當(dāng)CN為何值時(shí),MN∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈[0,1],則函數(shù) 的值域是(
A.
B.
C.[ , ]
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的偶函數(shù),對x∈R,都有f(x﹣2)=f(x+2),且當(dāng)x∈[﹣2,0]時(shí),f(x)=( x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是(
A.(2,3)
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,DP⊥x軸,點(diǎn)M在DP的延長線上,且|DM|=2|DP|.當(dāng)點(diǎn)P在圓x2+y2=1上運(yùn)動(dòng)時(shí).
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過點(diǎn)T(0,t)作圓x2+y2=1的切線交曲線C于A,B兩點(diǎn),求△AOB面積S的最大值和相應(yīng)的點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一半徑為2的半圓形紙板裁剪成等腰梯形ABCD的形狀,下底AB是半圓的直徑,上底CD的端點(diǎn)在圓周上,則所得梯形面積的最大值為(  )

A. 3 B. 3 C. 5 D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(x2+tx+2)(t為常數(shù),且﹣2 <t<2 ).
(1)當(dāng)x∈[0,2]時(shí),求函數(shù)f(x)的最小值(用t表示);
(2)是否存在不同的實(shí)數(shù)a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出實(shí)數(shù)t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案