A. | (1,1,1) | B. | ($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$) | ||
C. | ($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | D. | ($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)或(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$) |
分析 設(shè)滿足題意的向量為(x,y,z),由題意得到關(guān)于x,y,z的方程解之.
解答 解:設(shè)所求的單位向量為$\overrightarrow{a}$=(x,y,z),則由與$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$所成角都相等得到
$\overrightarrow{a}•\overrightarrow{i}=\overrightarrow{a}•\overrightarrow{j}=\overrightarrow{a}•\overrightarrow{k}$,所以x=y=z,且x2+y2+z2=1,所以x=y=z=$\frac{\sqrt{3}}{3}$或$-\frac{\sqrt{3}}{3}$;
故選D.
點評 本題考查了空間向量的數(shù)量積公式的運用;關(guān)鍵是由題意明確所求單位向量與已知向量的數(shù)量積關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com