【題目】已知數(shù)列{an}滿足 ,則{an}的前50項的和為 .
【答案】1375
【解析】解:當(dāng)n是奇數(shù)時,cosnπ=﹣1;當(dāng)n是偶數(shù)時,cosnπ=1. 則an=(﹣1)n(n2+4n)=(﹣1)nn2+(﹣1)n×4n,
{an}的前50項的和S50=a1+a2+a3+…+a50 ,
=(﹣12+22﹣32+42﹣…+502)+4(﹣1+2﹣3+4﹣…+50),
=(1+2+3+4+…+50)+4×25,
=1275+100,
=1375,
故答案為:1375
由當(dāng)n是奇數(shù)時,cosnπ=﹣1;當(dāng)n是偶數(shù)時,cosnπ=1.a(chǎn)n=(﹣1)n(n2+4n)=(﹣1)nn2+(﹣1)n×4n,S50=(﹣12+22﹣32+42﹣…+502)+4(﹣1+2﹣3+4﹣…+50),即可求得{an}的前50項的和.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點為F(2,0),M為橢圓的上頂點,O為坐標(biāo)原點,且△MOF是等腰直角三角形.
(1)求橢圓的方程;
(2)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過定點( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為矩形,平面, // ,, ,點點P在棱上.
(1)求證: ;
(2)若是的中點,求異面直線與所成角的余弦值;
(3)是否存在正實數(shù),使得,且滿足二面角的余弦值為,若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓心為,定點, 為圓上一點,線段上一點滿足,直線上一點,滿足.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)為坐標(biāo)原點, 是以為直徑的圓,直線與相切,并與軌跡交于不同的兩點.當(dāng)且滿足時,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代名詞“芻童”原來是草堆的意思,關(guān)于“芻童”體積計算的描述,《九章算術(shù)》注曰:“倍上袤,下袤從之,亦倍下袤,上袤從之,各以其廣乘之,并,以高乘之,皆六而一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘,將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個數(shù)值相加,與高相乘,再取其六分之一.已知一個“芻童”的下底面是周長為18的矩形,上底面矩形的長為3,寬為2,“芻童”的高為3,則該“芻童”的體積的最大值為
A. B. C. 39 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)四年級男同學(xué)有45名,女同學(xué)有30名,老師按照分層抽樣的方法組建了一個5人的課外興趣小組.
(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(Ⅱ)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項實驗,方法是先從小組里選出1名同學(xué)做實驗,該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實驗,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為ɑ的正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點.
(1)求直線C與平面ABCD所成角的正弦的值;
(2)求證:平面A B1D1∥平面EFG;
(3)求證:平面AA1C⊥面EFG .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手平時射擊成績統(tǒng)計如表:
環(huán)數(shù) | 7環(huán)以下 | 7 | 8 | 9 | 10 |
概率 | a | b |
已知他射中7環(huán)及7環(huán)以下的概率為.
求a和b的值;
求命中10環(huán)或9環(huán)的概率;
求命中環(huán)數(shù)不足9環(huán)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com