14.已知函數(shù)f(x)=-lnx+t(x-1),t為實(shí)數(shù).
(1)當(dāng)t=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)t=$\frac{1}{2}$時(shí),$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,求實(shí)數(shù)k的取值范圍.

分析 (1)求導(dǎo)函數(shù),利用導(dǎo)數(shù)大于0,求函數(shù)的單調(diào)增區(qū)間,導(dǎo)數(shù)小于0,求函數(shù)的單調(diào)減區(qū)間;
(2)當(dāng)t=$\frac{1}{2}$時(shí),$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,可得k<-xlnx+$\frac{1}{2}{x}^{2}$在(1,+∞)上恒成立,利用導(dǎo)數(shù)確定單調(diào)性,求出最值,即可求實(shí)數(shù)k的取值范圍.

解答 解:(1)當(dāng)t=1時(shí),f(x)=-ln x+(x-1),f′(x)=-$\frac{1}{x}$+1,
令f′(x)=0,∴x=1,∵x∈(0,+∞)
故函數(shù)f(x)的單調(diào)減區(qū)間為(0,1),單調(diào)增區(qū)間為(1,+∞);
(2)當(dāng)t=$\frac{1}{2}$時(shí),$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,
可得k<-xlnx+$\frac{1}{2}{x}^{2}$在(1,+∞)上恒成立,
令y=-xlnx+$\frac{1}{2}{x}^{2}$,則y′=-lnx-1+x,
y″=-$\frac{1}{x}$+1>0,∴y′在(1,+∞)上單調(diào)遞增,
∴y′>-ln1-1+1=0,
∴y在(1,+∞)上單調(diào)遞增,
∴y>$\frac{1}{2}$,
∴k≤$\frac{1}{2}$.

點(diǎn)評(píng) 本題以函數(shù)為載體,考查導(dǎo)數(shù)的運(yùn)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,同時(shí)考查了函數(shù)最值的運(yùn)用,有一定的綜合性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=(-ax2-2x+a)•ex(a∈R).
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的極值;
(2)若f(x)在[-1,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=cos2x+$\sqrt{3}$sinxcosx+$\frac{1}{2}$.
(1)求f(x)的對(duì)稱中心和對(duì)稱軸方程;
(2)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2$\sqrt{3}$sinθ.
(I)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(Ⅱ)在圓C上求一點(diǎn)D,使它到直線l的距離最短,并求出點(diǎn)D的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知定義在集合A上的函數(shù)f(x)=log2(x-1)+log2(2x+1),其值域?yàn)椋?∞,1],則A=$(1,\frac{3}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.以括號(hào)的形式給出正整數(shù)的排列形式如下:
(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),…據(jù)此規(guī)律,第100個(gè)括號(hào)里面的第1個(gè)數(shù)是( 。
A.4949B.4950C.4951D.4952

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知集合P={a|2kπ≤a≤2kπ+π,k∈Z},Q={a|-4≤a≤4},則P∩Q=[-4,-π]∪[0,π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.對(duì)于任意實(shí)數(shù)x,不等式mx2+mx+4>0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)f(x)=|x-1|+|x+1|,(x∈R)
(1)求證:f(x)≥2;
(2)若不等式f(x)≥$\frac{|2b+1|-|1-b|}{|b|}$對(duì)任意非零實(shí)數(shù)b恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案