9.已知定義在集合A上的函數(shù)f(x)=log2(x-1)+log2(2x+1),其值域?yàn)椋?∞,1],則A=$(1,\frac{3}{2}]$.

分析 由題意和真數(shù)大于零列出不等組,求出函數(shù)f(x)的定義域,利用對(duì)數(shù)的運(yùn)算化簡(jiǎn)解析式,由設(shè)t=2x2-x-1,由函數(shù)的值域和對(duì)數(shù)函數(shù)的性質(zhì)求出集合A.

解答 解:由題意得,$\left\{\begin{array}{l}{x-1>0}\\{2x+1>0}\end{array}\right.$,解得x>1,
則函數(shù)f(x)的定義域是(1,+∞),
又f(x)=log2(x-1)+log2(2x+1)=log2(x-1)(2x+1)
=log2(2x2-x-1),
設(shè)t=2x2-x-1,∵值域?yàn)椋?∞,1],∴t≤2,則2x2-x-1≤2,
即2x2-x-3≤0,解得$-1≤x≤\frac{3}{2}$,
∴集合A=$(1,\frac{3}{2}]$,
故答案為:$(1,\frac{3}{2}]$.

點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的圖象與性質(zhì),對(duì)數(shù)函數(shù)的定義域,以及對(duì)數(shù)的運(yùn)算性質(zhì),考查換元法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知向量$\overrightarrow{a}$=($\sqrt{3}$sin2x,cos2x),$\overrightarrow$=(cos2x,-cos2x),
(1)若x∈($\frac{7π}{24}$,$\frac{5π}{12}$)時(shí),$\overrightarrow{a}$•$\overrightarrow$+$\frac{1}{2}$=-$\frac{3}{5}$,求cos4x的值;
(2)cos2x≥$\frac{1}{2}$,x∈(0,π),若關(guān)于x的方程$\overrightarrow{a}$•$\overrightarrow$+$\frac{1}{2}$=m有且只有一個(gè)根,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)是定義在[1,+∞)上的函數(shù),且f(x)=$\left\{\begin{array}{l}1-|{2x-3}|,\;\;\;1≤x<2\\ \frac{1}{2}f({\frac{1}{2}x}),\;\;\;\;x≥2\;\end{array}$,則函數(shù)y=2xf(x)-3在區(qū)間(1,2016)上的零點(diǎn)個(gè)數(shù)為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知關(guān)于x的方程2sin2x-cos2x+2sinx+m=0有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin$\frac{x}{2}$-$\frac{1}{2}$cos$\frac{x}{2}$.求
(1)函數(shù)f(x)的最值及對(duì)應(yīng)自變量的取值;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=-lnx+t(x-1),t為實(shí)數(shù).
(1)當(dāng)t=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)t=$\frac{1}{2}$時(shí),$\frac{k}{x}$-$\frac{1}{2}$-f(x)<0在(1,+∞)上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系xOy中,曲線C:$\frac{{x}^{2}}{4}$+y2=1的右頂點(diǎn)是A、上頂點(diǎn)是B.
(1)求以AB為直徑的圓E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)D(0,2)且斜率為k(k>0)的直線l交曲線C于兩點(diǎn)M,N且$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,其中O為坐標(biāo)原點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知等比數(shù)列a1,a2,a3的和為定值m(m>0)且公比為負(fù)數(shù),則a1a2a3的最小值 為-m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知定義在R上的函數(shù)f(x)的對(duì)稱軸為x=-5,且當(dāng)x≥-5時(shí),f(x)=2x-3.若函數(shù)f(x)在區(qū)間(k,k+1)(k∈Z)上有零點(diǎn),則k的值為( 。
A.2或-11B.2或-12C.1或-12D.1或-11

查看答案和解析>>

同步練習(xí)冊(cè)答案