在平面直角坐標(biāo)系中,已知矩形ABCD的長(zhǎng)為2,寬為1,AB、AD邊分別在x軸、y軸的正半軸上,A點(diǎn)與坐標(biāo)原點(diǎn)重合(如圖).將矩形折疊,使A點(diǎn)落在線段DC上.
(I)若折痕所在直線的斜率為k,試求折痕所在直線的方程;
(II)當(dāng)時(shí),求折痕長(zhǎng)的最大值;
(Ⅲ)當(dāng)-2≤k≤-1時(shí),折痕為線段PQ,設(shè)t=k(2|PQ|2-1),試求t的最大值.

【答案】分析:(1)分情況討論斜率表示直線的方程
(2)表示出線段后,分類討論求最值
(3)表示線段,用均值不等式求最值
解答:解:(1)①當(dāng)k=0時(shí),此時(shí)A點(diǎn)與D點(diǎn)重合,折痕所在的直線方程
②當(dāng)k≠0時(shí),將矩形折疊后A點(diǎn)落在線段DC上的點(diǎn)記為G(a,1),
所以A與G關(guān)于折痕所在的直線對(duì)稱,
有kOG•k=-1⇒⇒a=-k
故G點(diǎn)坐標(biāo)為G(-k,1),
從而折痕所在的直線與OG的交點(diǎn)坐標(biāo)
(線段OG的中點(diǎn))為
折痕所在的直線方程,即
由①②得折痕所在的直線方程為:

(2)當(dāng)k=0時(shí),折痕的長(zhǎng)為2;
當(dāng)時(shí),折痕直線交BC于點(diǎn),交y軸于

∴折痕長(zhǎng)度的最大值為 

故折痕長(zhǎng)度的最大值為  
(3)當(dāng)-2≤k≤-1時(shí),折痕直線交DC于,交x軸于


∵-2≤k≤-1
(當(dāng)且僅當(dāng)時(shí)取“=”號(hào))
∴當(dāng)時(shí),t取最大值,t的最大值是
點(diǎn)評(píng):本題考察內(nèi)容比較綜合,考察了求直線方程、求函數(shù)的最值、均值不等式、數(shù)形結(jié)合和分類討論思想,屬難題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案