精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系中,若不等式組
x+y-1≥0
x-1≤0
ax-y+1≥0
(a為常數)所表示的平面區(qū)域內的面積等于2,則a=
 
分析:先根據約束條件
x+y-1≥0
x-1≤0
ax-y+1≥0
(a為常數),畫出可行域,求出可行域頂點的坐標,再利用幾何意義求關于面積的等式求出a值即可.
解答:精英家教網解:當a<0時,不等式組所表示的平面區(qū)域,
如圖中的M,一個無限的角形區(qū)域,面積不可能為2,
故只能a≥0,
此時不等式組所表示的平面區(qū)域如圖中的N,區(qū)域為三角形區(qū)域,
若這個三角形的面積為2,
則AB=4,即點B的坐標為(1,4),
代入y=ax+1得a=3.
故答案為:3.
點評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉化思想和數形結合的思想,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數,就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經過任何整點
②如果k與b都是無理數,則直線y=kx+b不經過任何整點
③直線l經過無窮多個整點,當且僅當l經過兩個不同的整點
④直線y=kx+b經過無窮多個整點的充分必要條件是:k與b都是有理數
⑤存在恰經過一個整點的直線.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,下列函數圖象關于原點對稱的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案