【題目】已知函數(shù) ,則滿足不等式 的實數(shù)m的取值范圍為

【答案】
【解析】解:∵函數(shù) ,
∴f( )= =2,
∴函數(shù)f(x)的圖象如圖所示:
=2,求得x= ,故點A的橫坐標為
令3x﹣3=2,求得x=log35,故點B的橫坐標為log35.
∴不等式 ,即f(m)≤2.
顧滿足f(m)≤2的實數(shù)m的取值范圍為 ,
所以答案是

【考點精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)和指、對數(shù)不等式的解法的相關(guān)知識點,需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集;指數(shù)不等式的解法規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化;對數(shù)不等式的解法規(guī)律:根據(jù)對數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為, 是橢圓上的一個點.

(1)求橢圓的標準方程;

(2)設(shè)橢圓的上、下頂點分別為, )是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,如果的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,

(1)求在點處的切線;

(2)討論的單調(diào)性;

(3)當, 時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線為參數(shù)),為參數(shù)).

(1)化的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

(2)若上的點對應的參數(shù)為上的動點,求的中點到直線為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,各側(cè)面是全等的等腰三角形,腰長為4且頂角為30°,底面是正方形(如圖),在棱PB,PC上各有一點M,N,且四邊形AMND的周長最小,點S從A出發(fā)依次沿四邊形AM,MN,ND運動至點D,記點S行進的路程為x,棱錐S﹣ABCD的體積為V(x),則函數(shù)V(x)的圖象是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn= ,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn= +(﹣1)nan , 求數(shù)列{bn}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校大一新生中的6名同學打算參加學校組織的“演講團”、“吉他協(xié)會”等五個社團,若每名同學必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中沒有人參加“演講團”的不同參加方法數(shù)為( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點A(2,0),B(0,1)兩點.
(1)求橢圓C的方程及離心率;
(2)設(shè)直線l與橢圓相交于不同的兩點A,B.已知點A的坐標為(﹣a,0),點 Q(0,y0)在線段AB的垂直平分線上,且 =4,求y0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,C是圓O上不同于A,B的一點,PA⊥平面ABC,E是PC的中點, ,PA=AC=1.

(1)求證:AE⊥PB;
(2)求二面角A﹣PB﹣C的正弦值.

查看答案和解析>>

同步練習冊答案