【題目】設(shè)橢圓:的左焦點(diǎn)為,過的直線與交于,兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)若點(diǎn)也是頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn),求拋物線的方程;
(2)當(dāng)與軸垂直時(shí),求直線的方程;
(3)設(shè)為坐標(biāo)原點(diǎn),證明:.
【答案】(1);(2)或;(3)證明見解析.
【解析】
(1)由拋物線的焦點(diǎn)為即可求得方程.
(2)求得的方程再代入橢圓計(jì)算坐標(biāo)即可.
(3)分支線斜率為0與,斜率不存在與一般斜率三種情況進(jìn)行討論.又由可轉(zhuǎn)證,聯(lián)立方程代入韋達(dá)定理化簡(jiǎn)即可.
(1)由題設(shè)拋物線,且焦點(diǎn)為則,故拋物線方程.
(2)由已知得,的方程為.代入橢圓方程可得,點(diǎn)的坐標(biāo)為或.所以的方程為或.
(3)當(dāng)與軸重合時(shí),.
當(dāng)與軸垂直時(shí),為的垂直平分線,所以.
當(dāng)與軸不重合也不垂直時(shí),設(shè)的方程為,,,則,,直線,的斜率之和為.
由,得.
將代入得.所以,,.
則.
從而,故,的傾斜角互補(bǔ),所以.
綜上,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報(bào)道,全國(guó)很多省市將英語考試作為高考改革的重點(diǎn),一時(shí)間“英語考試該如何改革”引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語改革的看法,某媒體在該地區(qū)選擇了3600人進(jìn)行調(diào)查,就“是否取消英語聽力”問題進(jìn)行了問卷調(diào)查統(tǒng)計(jì),結(jié)果如下表:
態(tài)度 調(diào)查人群 | 應(yīng)該取消 | 應(yīng)該保留 | 無所謂 |
在校學(xué)生 | 2100人 | 120人 | 人 |
社會(huì)人士 | 600人 | 人 | 人 |
(1)已知在全體樣本中隨機(jī)抽取人,抽到持“應(yīng)該保留”態(tài)度的人的概率為,現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取人,再平均分成兩組進(jìn)行深入交流,求第一組中在校學(xué)生人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng)中()的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)在[0,7]上有1和6兩個(gè)零點(diǎn),且函數(shù)與函數(shù)都是偶函數(shù),則在[0,2019]上的零點(diǎn)至少有( )個(gè)
A.404B.406C.808D.812
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩動(dòng)圓和(),把它們的公共點(diǎn)的軌跡記為曲線,若曲線與軸的正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)滿足:.
(1)求曲線的軌跡方程;
(2)證明直線恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)零點(diǎn), ,則下面說法正確的是( )
A. B. C. D. 有極小值點(diǎn),且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線有如下光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線反射后,沿平行于拋物線對(duì)稱軸的方向射出.現(xiàn)有拋物線,如圖一平行于軸的光線射向拋物線,經(jīng)兩次反射后沿平行軸方向射出,若兩平行光線間的最小距離為4,則該拋物線的方程為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com