A. | 90° | B. | 60° | C. | 45° | D. | 30° |
分析 異面直線所成的角通過平移相交,找到平面角,轉(zhuǎn)化為平面三角形的角求解,由題意:E,F(xiàn),G分別是DD1,AB,CC1的中點(diǎn),連接B1G,F(xiàn)B1,那么∠FGB1就是異面直線A1E與GF所成的角.
解答 解:由題意:ABCD-A1B1C1D1是長(zhǎng)方體,E,F(xiàn),G分別是DD1,AB,CC1的中點(diǎn),連接B1G,
∵A1E∥B1G,
∴∠FGB1為異面直線A1E與GF所成的角.
連接FB1,
在三角形FB1G中,AA1=AB=2,AD=1,
B1F=$\sqrt{(\frac{1}{2}AB)^{2}+A{{A}_{1}}^{2}}$=$\sqrt{5}$
B1G=$\sqrt{(\frac{1}{2}A{A}_{1})^{2}+A{D}^{2}}$=$\sqrt{2}$,
FG=$\sqrt{C{F}^{2}+(\frac{1}{2}A{A}_{1})^{2}}$=$\sqrt{3}$,
B1F2=B1G2+FG2.
∴∠FGB1=90°,
即異面直線A1E與GF所成的角為90°.
故選A.
點(diǎn)評(píng) 本題考查兩條異面直線所成角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com